K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2021

a, \(\left|x+2\right|+\left|-2x+1\right|\le x+1\left(1\right)\)

TH1: \(x\le-2\)

\(\Rightarrow x+1\le-1< \left|x+2\right|+\left|-2x+1\right|\)

\(\Rightarrow\) vô nghiệm

TH2: \(-2< x\le\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow x+2-2x+1\le x+1\)

\(\Leftrightarrow x\ge1\)

\(\Rightarrow x\in\left[1;\dfrac{1}{2}\right]\)

TH3: \(x>\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow x+2+2x-1\le x+1\)

\(\Leftrightarrow x\le0\)

\(\Rightarrow\) vô nghiệm

Vậy \(x\in\left[1;\dfrac{1}{2}\right]\)

21 tháng 1 2021

b, \(\left|x+2\right|-\left|x-1\right|< x-\dfrac{3}{2}\left(2\right)\)

TH1: \(x\le-2\)

\(\left(2\right)\Leftrightarrow-x-2+x-1< x-\dfrac{3}{2}\)

\(\Leftrightarrow x>-\dfrac{3}{2}\)

\(\Rightarrow\) vô nghiệm

TH2: \(-2< x\le1\)

\(\left(2\right)\Leftrightarrow x+2+x-1< x-\dfrac{3}{2}\)

\(\Leftrightarrow x< -\dfrac{5}{2}\)

\(\Rightarrow\) vô nghiệm

TH3: \(x>1\)

\(\left(2\right)\Leftrightarrow x+2-x+1< x-\dfrac{3}{2}\)

\(\Leftrightarrow x>\dfrac{9}{2}\)

\(\Rightarrow x\in\left(\dfrac{9}{2};+\infty\right)\)

Vậy \(x\in\left(\dfrac{9}{2};+\infty\right)\)

1:

c: =>1/3x+2/3-x+1>x+3

=>-2/3x+5/3-x-3>0

=>-5/3x-4/3>0

=>-5x-4>0

=>x<-4/5

d: =>3/2x+5/2-1<=1/3x+2/3+x

=>3/2x+3/2<=4/3x+2/3

=>1/6x<=2/3-3/2=-5/6

=>x<=-5

2:

Mở ảnh

Mở ảnh

Mở ảnh

Mở ảnh

7 tháng 4 2017

lời giải

a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\left(1\right)\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\left(2\right)\end{matrix}\right.\)

(1)\(\Leftrightarrow\)

\(\dfrac{3}{5}+\dfrac{7}{3}>\left(\dfrac{2}{3}+2\right)x\)

\(\dfrac{44}{15}>\dfrac{8}{3}x\) \(\Rightarrow x< \dfrac{44.3}{15.8}=\dfrac{11}{5.2}=\dfrac{11}{10}\)

Nghiêm BPT(1) là \(x< \dfrac{11}{10}\)

(2) \(\Leftrightarrow2x-1< 15x-5\Rightarrow13x>4\Rightarrow x>\dfrac{4}{13}\)

Ta có: \(\dfrac{4}{13}< \dfrac{11}{10}\) => Nghiệm hệ (a) là \(\dfrac{4}{13}< x< \dfrac{11}{10}\)

a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)

=>(2x-1)(x-2)(x+1)<>0

hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)

b: ĐKXĐ: x+5<>0

=>x<>-5

c: ĐKXĐ: x4-1<>0

hay \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x^4+2x^2-3< >0\)

=>\(x\notin\left\{1;-1\right\}\)

NV
26 tháng 2 2023

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
26 tháng 2 2023

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)

30 tháng 1 2021

1. 

ĐK: \(x\ne3;x\ne-2\)

\(\dfrac{5}{x-3}+\dfrac{3}{x+2}\le\dfrac{3+2x}{x^2-x-6}\)

\(\Leftrightarrow\dfrac{5\left(x+2\right)+3\left(x-3\right)}{x^2-x-6}\le\dfrac{3+2x}{x^2-x-6}\)

\(\Leftrightarrow\dfrac{8x+1-3-2x}{x^2-x-6}\le0\)

\(\Leftrightarrow\dfrac{6x-2}{x^2-x-6}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-2\ge0\\x^2-x-6< 0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}6x-2\le0\\x^2-x-6>0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}6x-2\ge0\\x^2-x-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\-2< x< 3\end{matrix}\right.\Leftrightarrow\dfrac{1}{3}\le x< 3\)

TH2: \(\left\{{}\begin{matrix}6x-2\le0\\x^2-x-6>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x< -2\)

Vậy ...

30 tháng 1 2021

2.

ĐK: \(x\ne\pm2\)

\(\dfrac{1}{x^2-4}+\dfrac{2}{x+2}>-\dfrac{3}{x-2}\)

\(\Leftrightarrow\dfrac{1}{x^2-4}+\dfrac{2\left(x-2\right)+3\left(x+2\right)}{x^2-4}>0\)

\(\Leftrightarrow\dfrac{5x+3}{x^2-4}>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5x+3>0\\x^2-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}5x+3< 0\\x^2-4< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{3}{5}< x< 2\\x< -2\end{matrix}\right.\)

Vậy ...