K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

Mình giải câu a thôi nha b,c,d tương tự

a/ để \(\frac{2}{x-1}\)nguyên thì x - 1 phải là ước nguyên của 2 hay (x - 1) = (-1, 1, -2, 2)

=> x = (0, 2, -1; 3)

22 tháng 12 2016

mình chịu

17 tháng 6 2021

\(a,\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)

\(1\le x\le3\)thì biểu thức được xác định

\(b,\frac{\sqrt{x-2}}{\sqrt{2x-1}}\)

để biểu thức đc xác định thì

\(\sqrt{x-2}\ge0\)

\(x\ge2\)

\(\sqrt{2x-1}\ne0< =>\sqrt{2x-1}>0\)

\(x>\frac{1}{2}\)

kết hợp điều kiện thì \(x\ge2\)

\(C=\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}.\frac{2}{\sqrt{x}}\)

\(C=\frac{2\sqrt{x}}{x-1}.\frac{2}{\sqrt{x}}\)

\(C=\frac{4}{x-1}\)

\(< =>x\ne0\)để biểu thức đc xđ

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

1 tháng 7 2019

Thuy Duong Nguyen đánh đề cẩn thận hơn bạn nhé

Lời giải :

a) ĐKXĐ : \(x\ne1\)

 \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)

\(\Leftrightarrow\sqrt{x}=\sqrt{2}-1\)

Khi đó \(A=\frac{2-5\left(\sqrt{2}-1\right)}{\sqrt{2}-1+3}\)

\(A=\frac{2-5\sqrt{2}+5}{\sqrt{2}+2}=\frac{7-5\sqrt{2}}{\sqrt{2}+2}\)

c) \(A=\frac{1}{2}\)

\(\Leftrightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)

\(\Leftrightarrow2\left(2-5\sqrt{x}\right)=\sqrt{x}+3\)

\(\Leftrightarrow4-10\sqrt{x}-\sqrt{x}-3=0\)

\(\Leftrightarrow1-11\sqrt{x}=0\)

\(\Leftrightarrow11\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x}=\frac{1}{11}\)

\(\Leftrightarrow x=\frac{1}{121}\)( thỏa )

d) A nguyên \(\Leftrightarrow2-5\sqrt{x}⋮\sqrt{x}+3\)

\(\Leftrightarrow-5\left(\sqrt{x}+3\right)+17⋮\sqrt{x}+3\)

Vì \(-5\left(\sqrt{x}+3\right)⋮\sqrt{x}+3\)

\(\Rightarrow17⋮\sqrt{x}+3\)

\(\Rightarrow\sqrt{x}+3\inƯ\left(17\right)=\left\{17\right\}\)( vì \(\sqrt{x}+3\ge3\))

\(\Leftrightarrow\sqrt{x}=14\)

\(\Leftrightarrow x=196\)( thỏa )

Vậy....

\(a,ĐKXĐ:\orbr{\begin{cases}x+2\sqrt{x}+3\ne0\\\sqrt{x}+3\ne0\end{cases}}\)

\(\Leftrightarrow\orbr{ }\sqrt{x}\ne-3\)

Rút gọn: p/s: sau phân số thứ 2 ở mẫu ko có x à? Bạn chép đề sai?

6 tháng 12 2019
https://i.imgur.com/uIbkS6G.jpg
24 tháng 8 2019

a, B= \(\frac{2\sqrt{x}+1}{x-7\sqrt{x}+12}-\frac{\sqrt{x}+3}{\sqrt{x}-4}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

<=> \(B=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-4}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

Để B có nghĩa

<=> \(\left\{{}\begin{matrix}\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)\ne0\\x\ge0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\sqrt{x}\ne4\\\sqrt{x}\ne3\\x\ge0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x\ne16\\x\ne9\\x\ge0\end{matrix}\right.\)

<=> \(x\ge0,x\ne16,x\ne9\)

Vậy để B có nghĩa <=> \(x\ge0,x\ne16,x\ne9\)

b, Có B=\(\frac{2\sqrt{x}+1}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-4}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)( đk: x\(\ge0\), \(x\ne16,x\ne9\))

<=> \(B=\frac{2\sqrt{x}+1-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)

= \(\frac{2\sqrt{x}+1-x+9+2x-8\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)=\(\frac{x-5\sqrt{x}+6}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}=\frac{x-2\sqrt{x}-3\sqrt{x}+6}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)

= \(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}-2}{\sqrt{x}-4}\)

24 tháng 8 2019

ý c, đúng đề chưa bạn