Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\frac{\sqrt{x}\left(\sqrt{2}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\left(\frac{\sqrt{2\text{x}}+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\sqrt{2}+2}.\frac{\sqrt{x}-2}{\sqrt{4\text{x}}}\)
\(=\frac{x\sqrt{2}-2\sqrt{2\text{x}}+x\sqrt{x}-2\text{x}}{2\sqrt{2\text{x}}+4\sqrt{x}}\)
tick cho mình nha
1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\); \(\sqrt{x}-3\rightarrow\sqrt{x-3}\)
Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)
a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
b) Để \(M=\frac{3}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)
\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)(tm)
Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)
c) Khi x = 4
\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)
\(\Leftrightarrow M=\frac{2+2}{2+3}\)
\(\Leftrightarrow M=\frac{4}{5}\)
Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)
a, B= \(\frac{2\sqrt{x}+1}{x-7\sqrt{x}+12}-\frac{\sqrt{x}+3}{\sqrt{x}-4}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
<=> \(B=\frac{2\sqrt{x}+1}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-4}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
Để B có nghĩa
<=> \(\left\{{}\begin{matrix}\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)\ne0\\x\ge0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\sqrt{x}\ne4\\\sqrt{x}\ne3\\x\ge0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x\ne16\\x\ne9\\x\ge0\end{matrix}\right.\)
<=> \(x\ge0,x\ne16,x\ne9\)
Vậy để B có nghĩa <=> \(x\ge0,x\ne16,x\ne9\)
b, Có B=\(\frac{2\sqrt{x}+1}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-4}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)( đk: x\(\ge0\), \(x\ne16,x\ne9\))
<=> \(B=\frac{2\sqrt{x}+1-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{2\sqrt{x}+1-x+9+2x-8\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)=\(\frac{x-5\sqrt{x}+6}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}=\frac{x-2\sqrt{x}-3\sqrt{x}+6}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}\)
= \(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}-2}{\sqrt{x}-4}\)
ý c, đúng đề chưa bạn