K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

Đặt A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 )

+ Xét x = 1 ; x = 2 ; x = 3 ; x = 4 thì ta luôn có A = 0 ( loại )

Xét x < 1 ta có :

x - 1 < 0

x - 2 < 0

x - 3 < 0

x - 4 < 0

=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0       ( chọn )

Xét x > 4 ta có :

x - 1 > 0

x - 2 > 0

x - 3 > 0

x - 4 > 0

=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0       ( nhận )

Để A > 0 thì x < 1 hoặc x > 4

4 < x < 1

=> x = 3 ; 2

22 tháng 1 2018

Ta có : 

Với \(x< 1\) thì \(x-1,x-2,x-3,x-4\) đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)

Với \(1\le x< 2\) thì \(x-1\ge0;x-2,x-3,x-4\)  đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)

Với \(2\le x< 3\) thì \(x-1\ge0;x-2\ge0,x-3< 0,x-4< 0\) nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)

Với \(3\le x< 4\) thì \(x-1\ge0;x-2\ge0,x-3\ge0,x-4< 0\) nên 

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)

Với \(x\ge4\) thì  \(x-1\ge0;x-2\ge0,x-3\ge0,x-4\ge0\)

nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)

Vậy nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\Leftrightarrow x< 1\) hoặc \(2< x< 3\) hoặc x > 4.

1 tháng 10 2016

\(a.\left(x-4\right)\left(x+7\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)

\(b.x\left(x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)

\(c.\left(x-2\right)\left(5-x\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)

\(d.\left(x-1\right)\left(x^2+1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)

6 tháng 11 2016

a) ( x - 4 ) . ( x + 7 ) = 0

một phép nhân có tích bằng 0 

=> một trong hai thừa số này bằng 0 

+) nếu x - 4 = 0 => x = 0 + 4 = 4

+) nếu x + 7 = 0 => x = 0 - 7 = -7

vậy x = { 4 ; -7 }

b) x . ( x + 3 ) = 0

x + 3 = 0 : x

x + 3 = 0

x = 0 - 3

x = -3

vậy x = -3

c) ( x - 2 ) . ( 5 - x ) = 0

một phép nhân có tích bằng 0 

=> một trong hai thừa số này bằng 0 

+) nếu x - 2 = 0 => x = 0 + 2 = 2

+) nếu 5 - x = 0 => x = 5 - 0 = 5

vậy x = { 2 ; 5 }

d) ( x - 1 ) . ( x2 + 1 ) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

+) x - 1 = 0 => x = 0 + 1 = 1

+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1

vậy x = { 1 ; -1 }

11 tháng 9 2016

a) \(\left(x-4\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=7\end{array}\right.\)

b) \(x\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)

c) \(\left(x-2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\5-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=5\end{array}\right.\)

d) \(\left(x-1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x-1=0\) ( Vì \(x^2+1>0\) )

\(\Leftrightarrow x=1\)

11 tháng 9 2016

a)

\(\left(x-4\right)\left(x-7\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=7\end{array}\right.\)

Vậy x = 4 ; x = 7

b)

\(x\left(x+3\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)

Vậy x = 0 ; x = - 3

c)

\(\left(x-2\right)\left(5-x\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=5\end{array}\right.\)

Vậy x = 2 ; x = 5

d)

\(\left(x-1\right)\left(x^2+1\right)=0\)

Mà \(x^2+1\ge1\)

=> x = - 1

Vậy x = - 1

8 tháng 4 2017

k mk đi mk k lại

13 tháng 6 2017

a) \(x\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)

Rút gọn hai vế cho (x - 2), ta được:

\(x=x-1\)

\(x-x=1\)

\(0=1\)(vô lý)

Suy ra: Không tồn tại giá trị nào của x để thoả mãn đề bài.

b) \(\left(x-2\right)\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)

Rút gọn hai vế cho (x-3), ta được:

\(x-2=x-4\)

\(-2=-4\)

Suy ra: Không tồn tại giá trị nào của x để thoả mãn đề bài.

c) \(\left(x+1\right)^2=\left(x+2\right)^2\)

\(\Rightarrow\) \(\sqrt{\left(x+1\right)^2}=\sqrt{\left(x+2\right)^2}\)

  \(\Rightarrow\)           \(x+1=x+2\)

\(\Rightarrow\)                \(x-x=2-1\)

\(\Rightarrow0=1\)( vô lý)

Suy ra: Không tồn tại giá trị nào của x để thoả mãn đề bài.

d) \(\left(x+1\right)^{x-1}=0\Rightarrow\frac{\left(x+1\right)^x}{\left(x+1\right)}=0\)

Mà mẫu số luôn khác 0. Nên \(x+1\ne0\) 

Mà để \(\frac{\left(x+1\right)^x}{\left(x+1\right)}=0\)

Thì \(\left(x+1\right)^x=0\)

\(\Rightarrow x+1=0\) ( Vô lý vì \(x+1\ne0\))

Suy ra: Không tồn tại giá trị nào của x để thoả mãn đề bài.

Vậy cả bốn câu trên đều không tồn tại giá trị của x.

( Nếu đúng thì k cho mình nhé!)

12 tháng 7 2016

có: \(\hept{\begin{cases}\left(x-y-z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\Rightarrow\left(x-y-z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
                                           \(\Leftrightarrow\hept{\begin{cases}\left(x-y-z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y-z=0\\y-2=0\\z+3=0\end{cases}}\)
                                            \(\Leftrightarrow\hept{\begin{cases}x=y+z\\y=2\\z=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\\z=-3\end{cases}}\)

28 tháng 1 2020

chờ mình nha !

28 tháng 1 2020

(x+x+x+x+x+...+x)+(1+3+5+...+99)=0

50x + 2500 = 0

50x=0- 2500

50x =-2500

x=-2500:50

x=-50 

Vậy x=-50

AH
Akai Haruma
Giáo viên
15 tháng 1 2023

Lời giải:

1. Ta thấy: 
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$

$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$

2.

Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>

25 tháng 1 2019

\(\left(x^2+3\right)\left(x+7\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+3=0\\x+7=0\end{cases}}\)

\(Dễ,thấy:x^2+3>0\Rightarrow x+7=0\Rightarrow x=-7\)

\(\text{Vậy: x=(-7)}\)

Mấy câu khác tương tự nhé :v

25 tháng 1 2019

\(\left(x^2+3\right)\left(x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3=0\\x+7=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=-3\left(loại\right)\\x=0-7\end{cases}}\)

\(\Leftrightarrow x=-7\)

\(\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\pm2\end{cases}}\)