Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x-\frac{3}{5}\right|=2x-\frac{2}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{5}=2x-\frac{2}{5}\\x-\frac{3}{5}=\frac{2}{5}-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\3x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=\frac{1}{3}\end{cases}}\)
Vậy \(x\in\left\{-\frac{1}{5};\frac{1}{3}\right\}\)
b) \(\left|x+0,37\right|=\left|2x-0,63\right|\)
\(\Leftrightarrow\orbr{\begin{cases}x+0,37=2x-0,63\\x+0,37=0,63-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\3x=0,26\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{13}{150}\end{cases}}\)
Vậy \(x\in\left\{\frac{13}{150};1\right\}\)
a) \(\left(x-5\right)\left(4-x\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x-5>0\\4-x>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>5\\x>4\end{matrix}\right.\)\(\Rightarrow x>5\)
\(\left\{{}\begin{matrix}x-5< 0\\4-x< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 5\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 4\)
Tập nghiệm: x > 5 ; x < 4
b) \(x^2-2x\ge0\)
\(\Leftrightarrow x\left(x-2\right)\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x-2\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ge2\end{matrix}\right.\)\(\Rightarrow x\ge2\)
\(\left\{{}\begin{matrix}x\le0\\x-2\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le0\\x\le2\end{matrix}\right.\)\(\Rightarrow x\le0\)
Tập nghiệm: x >= 2 ; x<= 0
2,
|x+2| - |3x-1| = 0
⇒\(\left[{}\begin{matrix}x+2=0\\3x-1=0\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=-2\\3x=1\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=-2\\x=1:3\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy x ∈ \(\left\{\left(-2\right);\dfrac{1}{3}\right\}\)
1,
D= |x+1| + |x+3| + |x+5|
= |-x-1| + |x+3| + |x+5|
= |-x-1+x+3+x+5| = 1
Dấu bằng xảy ra khi -5 ≤ x ≤ -1
Vậy GTNN của D bằng 1 khi -5 ≤ x ≤ -1
Bài 1 mk lm bừa ko đúng đâu nha ☺
Tick mk bài 2 nhé
MẠI ZÔ MẠI ZÔ !!!
Bài này có 2 cách, cách 1 là xét 3 trường hợp, cách 2 là sử dụng phương pháp đánh giá. Trong bài này cách 2 ngắn hơn thì mình sẽ làm.
Điều kiện: x \(\ge\)0
Ta có: VT = |x - 3,2| + |2x - 0,2| = |3,2 - x| + |2x - 0,2| \(\ge\) |3,2 - x + 2x - 0,2| = |x + 3| = VP
Dấu "=" xảy ra <=> (3,2 - x)(2x - 0,2) \(\ge\) 0.
<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}3,2-x\ge0\\2x-0,2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3,2\\x\ge0,1\end{matrix}\right.\Leftrightarrow0,1\le x\le3,2}}\\\left\{{}\begin{matrix}3,2-x\le0\\2x-0,2\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge3,2\\x\le0,1\end{matrix}\right.\Leftrightarrow x}\in\varphi}\end{matrix}\right.\)
\(\left|x-3,2\right|+\left|2x-\frac{1}{5}\right|=x+3.\)
ĐK : \(x+3\ge0\Leftrightarrow x\ge-3\)
Th1 : \(x-3,2+2x-\frac{1}{5}=x+3\)
\(x-3,2+2x=x+\frac{16}{5}\)
\(x+2x=x+\frac{32}{5}\)
\(2x=\frac{32}{5}\)
\(\Leftrightarrow x=3,2\)(tm)
\(x-3,2+2x-\frac{1}{5}=3-x\)
\(x-3,2+2x=3-x+\frac{1}{5}\)
\(x-3,2+2x=\frac{16}{5}-x\)
\(x+2x=\frac{16}{5}-x+3,2\)
\(x+2x=\frac{32}{5}-x\)
\(2x=\frac{32}{5}-x-x\)
\(2x=\frac{32}{5}-2x\)
\(4x=\frac{32}{5}\)
\(x=1,6\)(tm)
Vậy \(x=1,6\)hoặc \(x=3,2\)
ta có \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Suy ra \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
\(\frac{y}{12}=2\Rightarrow y=2.12=24\)
\(\frac{z}{15}=2\Rightarrow z=2.15=30\)
Vậy x=16;y=24;z=30