Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
a, (5x+7)(2x-1) <0
<=> \(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}5x< 7\\2x< 1\end{cases}}\)
<=> \(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}}\)<=> ..................
(5x+7)(2x-1) =0
<=> \(\orbr{\begin{cases}5x+7=0\\2x-1=0\end{cases}}\)<=> ..................
b) \(\left|5-3x\right|< 2\)
Ta tách ra thành 2 trường hợp:
\(5-3x< 2;5-3x\ge0\)
\(-\left(5-3x\right)< 2;5-3x< 0\)
Giải 2 trường hợp và tìm x:
\(x>1;x\le\frac{5}{3}\)
\(x< \frac{7}{3};x>\frac{5}{3}\)
\(\Rightarrow x\in\text{⟨}1;\frac{7}{3}\text{⟩}\)
a) Vì 5x >= 0
=> x >= 0
=> 2x - 3 = 5x
=> 2x - 5x = 3
=> -3x = 3
=> x = -1
b) Vì x + 2 lớn hơn hoặc bằng 0
=> x = x + 2
=> x - x = 2
=> 0 = 2 ( loại )
Bổ sung câu b)
TH2 :
x = -x - 2
x + x = -2
2x = -2
=> x = -1
Vậy, x = -1
a) \(\left(x-5\right)\left(4-x\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x-5>0\\4-x>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>5\\x>4\end{matrix}\right.\)\(\Rightarrow x>5\)
\(\left\{{}\begin{matrix}x-5< 0\\4-x< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 5\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 4\)
Tập nghiệm: x > 5 ; x < 4
b) \(x^2-2x\ge0\)
\(\Leftrightarrow x\left(x-2\right)\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x-2\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ge2\end{matrix}\right.\)\(\Rightarrow x\ge2\)
\(\left\{{}\begin{matrix}x\le0\\x-2\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le0\\x\le2\end{matrix}\right.\)\(\Rightarrow x\le0\)
Tập nghiệm: x >= 2 ; x<= 0