Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) X : \(\frac{7}{9}=\frac{32}{99}:\left(2+\frac{4}{9}\right)\) => X : \(\frac{7}{9}=\frac{32}{99}:\frac{22}{9}\)=> X : \(\frac{7}{9}=\frac{64}{81}\) => X = \(\frac{64}{81}.\frac{7}{9}=\frac{64}{63}\)
b) \(\frac{17}{99}:\left(2+\frac{3}{9}\right)=X:\frac{3}{9}\)=> \(\frac{17}{99}:\frac{7}{3}=X:\frac{1}{3}\)=> \(\frac{17}{231}=X:\frac{1}{3}\)=> X = \(\frac{17}{231}.\frac{1}{3}=\frac{17}{693}\)
Vậy...
a) x: 7/9 = 32/99 : 22/9
<=>x * 9/7= 32/99 * 9/22
<=>x* 9/7 = 16/121
<=>x=16/121 : 9/7
<=>x=112/1089
b) 17/99 : 7/3= x: 1/3
<=> 17/99 * 3/7 = x*3
<=> 17/231 = 3x
<=>x= 17/231 : 3
<=>x=17/693
a) \(0,\left(31\right)+x=0,3\left(7\right)\\ \Rightarrow\dfrac{31}{99}+x=\dfrac{17}{45}\\ \Rightarrow x=\dfrac{17}{45}-\dfrac{31}{99}=\dfrac{32}{495}=0,0\left(64\right)\)
Vậy \(x=0,0\left(64\right)\)
b) \(0,\left(4\right)\cdot x=\dfrac{5}{6}\\ \Rightarrow\dfrac{4}{9}\cdot x=\dfrac{5}{6}\\ \Rightarrow x=\dfrac{5}{6}:\dfrac{4}{9}\\ \Rightarrow x=\dfrac{5}{6}\cdot\dfrac{9}{4}\\ \Rightarrow x=\dfrac{15}{8}=1,875\)
Vậy \(x=1,875\)
a: =>x+5>0 và x-2<0
=>-5<x<2
=>x thuộc {-4;-3;...;1}
b: =>(x-5)(x+5)>0
=>x>5 hoặc x<-5
=>x thuộc Z\{-5;-4;-3;...;3;4;5}
c: =>(x+6)(x-7)>0
=>x>7 hoặc x<-6
a) \(\left|1-x\right|+\left|y-\frac{2}{3}\right|+\left|x+z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}1-x=0\\y-\frac{2}{3}=0\\x+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-0=1\\y=0+\frac{2}{3}=\frac{2}{3}\\z=0-1=-1\end{cases}}}\)
Vậy \(x=1,y=\frac{2}{3},z=-1\)
b) \(\left|\frac{1}{4}-x\right|+\left|x+y+z\right|+\left|\frac{2}{3}+y\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{4}-x=0\\x+y+z=0\\\frac{2}{3}+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}-0=\frac{1}{4}\\x+y+z=0\\y=0+\frac{2}{3}=\frac{2}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{4}\\z=0-\frac{1}{4}-\frac{2}{3}=\frac{-11}{12}\\y=\frac{2}{3}\end{cases}}}\)
Vậy \(x=\frac{1}{4},y=\frac{-11}{12},z=\frac{2}{3}\)
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
a) x÷0,(7)=0,(32):2,(4)
\(x:\frac{7}{9}=\frac{32}{99}:\frac{22}{9}\)
\(x:\frac{7}{9}=\frac{16}{121}\)
\(x=\frac{16}{121}.\frac{7}{9}\)
\(x=\frac{112}{1089}\)
b)0,(17):2,(3)=x:0,(3)
\(\frac{17}{99}:\frac{7}{3}=x:\frac{1}{3}\)
\(\frac{17}{231}=x:\frac{1}{3}\)
x=\(\frac{17}{231}.\frac{1}{3}\)
\(x=\frac{17}{693}\)