Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ĐK 2016x - 2017 \(\ge\)0
khi đó \(\orbr{\begin{cases}|6x-2|-5=2016x-2017\\|6x-2|-5=-2016x+2017\end{cases}}\)
TH1: /6x-2/ - 5 = 2016x-2017 (1)
với x\(\ge\)1/3 Từ (1) suy ra 6x-2 - 5 = 2016x - 2017
2010x = 2010 suy ra x=1
Với x < 1/3 . Từ (1) suy ra -(6x-2) - 5 = 2016x- 2017
-6x + 2 - 5 = 2016x - 2017
2014 = 2022 x
x= 2014/2022 (loại)
TH2: /6x-2/ - 5 = -2016x+2017 (2)
các em làm tương tự nhé
a) \(\left(x-\sqrt{3}\right)^2=\frac{3}{4}\)
\(\Leftrightarrow x-\sqrt{3}=\pm\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{3}=-\frac{\sqrt{3}}{2}\\x-\sqrt{3}=\frac{\sqrt{3}}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{2}\\\frac{3\sqrt{3}}{2}\end{cases}}\)
Nghiệm cuối cùng là : \(x_1=\frac{\sqrt{3}}{2};x_2=\frac{3\sqrt{3}}{2}\)
b) || 6x - 2 | - 5 | = 2016. x -2017
<=> || 6x - 2 | -5 | -2016x = -2017
<=> \(\orbr{\begin{cases}\left|6x-2\right|-5-2016.x=-2017,\left|6x-2\right|-5\ge0\\-\left(\left|6x-2\right|-5\right)-2016x=-2017,\left|6x-2\right|-5< 0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1,x\in\left[-\infty,-\frac{1}{2}\right];\left[\frac{7}{6};+\infty\right]\\x=\frac{1012}{1011},x\in\left[-\frac{1}{2},\frac{7}{6}\right]\end{cases}}\)
<=>\(\orbr{\begin{cases}x\in\varnothing\\x=\frac{1012}{1011}\end{cases}}\)
Vậy x = \(\frac{1012}{1011}\)
a, Ta có:
\(\orbr{\begin{cases}x-\sqrt{\frac{3}{4}}=\sqrt{\frac{3}{4}}\\x-\sqrt{\frac{3}{4}}=-\sqrt{\frac{3}{4}}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\sqrt{\frac{3}{4}}\\x=0\end{cases}}}\)
\(\left|\left|6x-2\right|-5\right|=2016x-2017\)
Xét trường hợp 1: \(\left|6x-2\right|-5=2016x-2017\)
\(\Rightarrow\left|6x-2\right|=2016x-2017+5\)
\(\Rightarrow\left|6x-2\right|=2016x-2012\)
\(\Rightarrow\left[{}\begin{matrix}6x-2=2016x-2012\\6x-2=-\left(2016x-2012\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x-2-2016x+2012=0\\6x-2+2016x-2012=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2010x+2010=0\\2022x-2014=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2010x=-2010\\2022x=2014\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2010:-2010\\x=2014:2022\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1007}{1011}\end{matrix}\right.\)
Xét trường hợp 2: \(\left|6x-2\right|-5=-\left(2016x-2017\right)\)
\(\Rightarrow\left|6x-2\right|=-\left(2016x-2017\right)+5\)
\(\Rightarrow\left|6x-2\right|=-2016x+2017+5\)
\(\Rightarrow\left|6x-2\right|=-2016x+2022\)
\(\Rightarrow\left|6x-2\right|=-\left(2016x-2022\right)\)
\(\Rightarrow\left[{}\begin{matrix}6x-2=-\left(2016x-2022\right)\\6x-2=-\left[-\left(2016x-2022\right)\right]\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x-2=-\left(2016x-2022\right)\\6x-2=2016x-2022\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x-2-\left[-\left(2016x-2022\right)\right]=0\\6x-2-\left(2016x-2022\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x-2+2016x-2022=0\\6x-2-2016x+2022=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2022x-2024=0\\-2010x+2020=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2022x=2024\\-2010x=-2020\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2024:2022\\x=\left(-2020\right):\left(-2010\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1012}{1011}\\x=\dfrac{202}{201}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=\dfrac{1007}{1011}\) hoặc \(x=\dfrac{1012}{1011}\) hoặc \(x=\dfrac{202}{201}\)
Tính giá trị của đa thức:
P(x) = x^{2017}-2016x^{2016}-2016x^{2015}-...--2016x^2^-2016x+1 tại x=2017
Ta có: x=2017 suy ra: x+1=2018
Thay x+1=2018 vào biểu thức A,ta có:
\(x^{20}-x+1.x^{19}-x+1.x^{18}-...-x+1.x-1=x^{20}-x^{20}-x^{19}+x^{19}+...+x-1\)
Suy ra: x-1=2017-1=2016
Vậy x=2016
6x-2-5=2016x-2017
6x-7=2016x-2017
2016x-6x=2017-7
2010x=2010
x=1