K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

Đề:............

<=> - (1 - 2018x) + 2019x.(1 - 2018x) = 0

<=> (1 - 2018x).[(-1) + 2019x] = 0

Xét 2 trường hợp, ta có:

TH1: 1 - 2018x = 0          TH2: -1 + 2019x = 0

<=> 2018x = 1                 <=> 2019x = 1

<=> x = 1/2018                <=> x = 1/2019

Vậy x = 1/2018; 1/2019

9 tháng 11 2018

\(2018x-1+2019x\left(1-2018x\right)=0\)

\(-\left(1-2018x\right)+2019x\left(1-2018x\right)=0\)

\(\left(1-2018x\right)\left(-1+2019x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}1-2018x=0\\-1+2019x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2018}\\x=\frac{1}{2019}\end{cases}}}\)

8 tháng 11 2018

\(2018x^2-2019x+1=0\)

\(2018x^2-2018x-x+1=0\)

\(2018x\left(x-1\right)-\left(x-1\right)=0\)

\(\left(x-1\right)\left(2018x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2018x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2018}\end{cases}}}\)

8 tháng 11 2018

\(\frac{1}{2018}\)

31 tháng 10 2018

x2 - 5x = 0

=> x(x - 5) = 0

=> \(\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

31 tháng 10 2018

b)  (3x - 5)2 - 4 = 0

=> (3x - 5)2 = 0 + 4

=> (3x - 5)2 = 4

=> (3x - 5)2 = 22

=> \(\orbr{\begin{cases}3x-5=2\\3x-5=-2\end{cases}}\)

=> \(\orbr{\begin{cases}3x=7\\3x=3\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)

20 tháng 2 2019

a) \(x^4+2019x^2+2018x+2019\)

\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)

\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)

b) \(E=2x^2-8x+1=2x^2-8x+8-7\)

\(=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\Rightarrow E\ge-7\)

Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy MinE = -7 <=> x = 2

20 tháng 2 2019

b) \(E=2x^2-8x+1\)

\(E=2\left(x^2-4x+\frac{1}{2}\right)\)

\(E=2\left(x^2-2\cdot x\cdot2+2^2+\frac{7}{2}\right)\)

\(E=2\left[\left(x-2\right)^2+\frac{7}{2}\right]\)

\(E=2\left(x-2\right)^2+7\ge7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy....

4 tháng 3 2020

Cô Nguyễn Linh Chi : Cho e hỏi là bài này không cần chia, mà ta chỉ cần chuyển vế,phân tích đa thức thành nhân tử rồi thay vào để tính biểu thức A có được không ạ ??

Khi đó ta có là : \(\hept{\begin{cases}x=y\\2018x=-2019y\end{cases}}\)

Rồi nhận xét loại đc TH \(2018x=-2019y\) do x,y không cùng > 0

Khi đó có : \(A=\frac{2018x+x}{2019x-2018x}=2019\)

Em thấy dễ dàng hơn cô ạ !!

4 tháng 3 2020

\(2018x^2+xy=2019y^2\)

chia cả hai vế cho y^2 ta có:

\(2018.\left(\frac{x}{y}\right)^2+\frac{x}{y}-2019=0\)

Đặt: \(t=\frac{x}{y}>0\)ta có: \(2018t^2+t-2019=0\Leftrightarrow2018t^2-2018t+2019t-2019=0\)

<=> \(2018t\left(t-1\right)+2019\left(t-1\right)=0\)

<=> \(\left(t-1\right)\left(2018t+2019\right)=0\)

<=> \(\orbr{\begin{cases}t-1=0\\2018t+2019=0\end{cases}}\)

<=> \(\orbr{\begin{cases}t=1\left(tm\right)\\t=-\frac{2019}{2018}\left(loai\right)\end{cases}}\)

Ta có: \(A=\frac{2018x+y}{2019x-2018y}=\frac{2018.\frac{x}{y}+1}{2019.\frac{x}{y}-2018}=\frac{2018t+1}{2019t-2018}=\frac{2018+1}{2019-2018}=2019\)

8 tháng 9 2019

Câu a):

ta có (x2-x-2)2+(x-2)2

=((x-2)2(x+1))2+(x-2)2

=(x-2)2(x2+2x+2)

24 tháng 10 2019
https://i.imgur.com/DxE4HlK.jpg

ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2018};-\dfrac{2}{2019};-\dfrac{1}{505};\dfrac{-5}{2021}\right\}\)

Ta có: \(\dfrac{1}{2018x+1}-\dfrac{1}{2019x+2}=\dfrac{1}{2020x+4}-\dfrac{1}{2021x+5}\)

\(\Leftrightarrow\dfrac{2019x+2-2018x-1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{2021x+5-2020x-4}{\left(2020x+4\right)\left(2021x+5\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(2018x+1\right)\left(2019x+2\right)=\left(2020x+4\right)\left(2021x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4074342x^2+6055x+2=4082420x^2+18184x+20\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(nhận\right)\\-8078x^2-12129x-18=0\end{matrix}\right.\)

Ta có: \(-8078x^2-12129x-18=0\)(2)

\(\Delta=\left(-12129\right)^2-4\cdot\left(-8078\right)\cdot\left(-18\right)=146531025\)

Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{12129-12105}{2\cdot\left(-8078\right)}=\dfrac{-6}{4039}\left(nhận\right)\\x_2=\dfrac{12129+12105}{2\cdot\left(-8078\right)}=-\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{-6}{4039};\dfrac{-3}{2}\right\}\)

9 tháng 2 2021

Bạn có chắc là bạn có giải đúng cách của lớp 8 không đấy?

25 tháng 12 2018

a) ( 2x +3)2 + (2x-3)2 + (2x+3)(4x-6) + xy

= (2x+3)2 + 2(2x+3)(2x-3) + xy

= \([\) (2x+3) + (2x-3) \(]\)2 + xy

= (4x)2 + xy = 16x2 + xy = x(16 + y)

b) x2 + x - y2 + y

= (x2 - y2 ) + ( x + y )

= (x+y)(x-y) + (x+y)

= (x+y)(x-y+1)

c) 3x2 + 3y2 - 6xy - 12

= 3(x2 + y2 - 2xy - 4)

= 3[ (x-y)2 -22 ] = 3(x-y-2)(x-y+2)

d) x3 -x + 3x2y + 3xy2 -y + y3

= ( x3 + 3x2y + 3xy2 + y3 ) - (x + y)

= (x+y)3 - (x+y)

= (x+y)[ (x+y)2 - 1 ] = (x+y)(x+y-1)(x+y+1)

e) 2018x2 - 2019x + 1 = 0

=> 2018x2 - 2018x - x + 1 = 0

=> 2018x(x-1) - (x-1) = 0

=> (x-1)(2018x-1) = 0

=> \(\left[{}\begin{matrix}x-1=0\\2018x-1=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2018}\end{matrix}\right.\)