Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x = y = 1/2.
GTNN của A là 6.
\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)
Dấu "=" xảy ra khi x = y = 1/2.
Vậy GTNN của B là 8063.
Tớ chỉ làm được 2 cách =(((
Cách 1: \(x^2+x-6\)
\(=x^2-\left(2x+3x\right)-6\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
Cách 2: \(x^2+x-6\)
\(=x^2+3x-2x-6\)
\(=x\left(x+3\right)-2\left(x+3\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
c1.x\(^{^{ }2}\) - x - 6 = x\(^2\) - 3x +2x -6 = x( x- 3 ) + 2( x - 3 ) = ( x - 3)( x +2 )
c2. x\(^2\) - x - 6 = x\(^2\) + 4x + 4 - 5x -10 = ( x + 2)\(^2\) - 5( x + 2 ) = ( x + 2 ) ( x + 2 -5 )
= ( x + 2 )(x - 3 )
tui nghĩ đc có 2 cách này thôi thông cảm
\(A=\left(x+5\right)\left(2x-3\right)-2x\left(x+3\right)-\left(x-15\right)\)
\(=\left(2x^2-3x+10x-15\right)-2x^2-6x-x+15\)
\(=2x^2-3x+10x-15-2x^2-6x-x+15\)
\(=0\)