K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

\(a,9x^2-1=0\)

\(\left(3x\right)^1-1=0\)

\(\left(3x-1\right)\cdot\left(3x+1\right)=0\)

\(\hept{\begin{cases}3x-1=\\3x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}}\)

\(b,x\cdot\left(x+5\right)-x-5=0\)

\(x\cdot\left(x+5\right)-\left(x+5\right)=0\)

\(\left(x+5\right)\cdot\left(x-1\right)=0\)

\(\hept{\begin{cases}x+5=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\x=1\end{cases}}}\)

7 tháng 3 2017

ai giúp mình được không?

7 tháng 3 2017

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{4}{2xy}\)

Áp dụng BĐT C-S dạng Engel ta có: 

\(A=\frac{1}{x^2+y^2}+\frac{4}{2xy}=\frac{1^2}{x^2+y^2}+\frac{2^2}{2xy}\)

\(\ge\frac{\left(1+2\right)^2}{x^2+y^2+2xy}=\frac{3^2}{\left(x+y\right)^2}=9\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

Vậy với \(x=y=\frac{1}{2}\) thì \(A_{Min}=9\)

26 tháng 8 2016

ko biết

26 tháng 8 2016

B=-x^2+2xy-4y^2+2x+10y-8
B = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
B = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
B = - (x - y - 1)^2 - 3(y - 2)^2 +5 \ 5

 B = 5 khi x = 3, y = 2

\(K\)\(nha!!\)

14 tháng 12 2018

\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x+6\right)\left(x-1\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-6^2.P_{min}\Leftrightarrow x^2+5xđạtGTNN\)

\(x^2+5x\ge0\Leftrightarrow x\left(x+5\right)\ge0\)

Dấu "=" xảy ra <=> \(x\in\left\{0;-5\right\}\)

Vậy: Pmin=-36 <=> x E {0;-5}

14 tháng 12 2018

CHờ tí mk lm câu b