Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{X\left(X+2\right)}\)
\(\frac{1}{2}.\left(\frac{1}{1.3}+...+\frac{1}{X\left(X+2\right)}\right)\)= \(\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{X}-\frac{1}{X+2}\right)\)
=15
TA CÓ : 1/1.3 + 1/3.5 + 1/5.7 +... + 1/X(X+2) = 8/17
=> 2/1.3 + 2/3.5 + 2/5.7 +... + 2/X(X+2) = 8/17 . 2 = 16/17
<=> 1 - 1/X+2 = 16/17
X+2/X+2 - 1/X+2 = 16/17
X+2 -1/X+2 = 16/17
=> X+2 -1 =16 VÀ X+2 = 17
=> X = 15
nhân 2 vào 2 vế rồi bạn biến đổi ra( mình lười làm ắ)
tìm được x=50 ắ
Với mọi x ta có :
+) \(\left|x+\dfrac{1}{1.3}\right|\ge0; \)
+) \(\left|x+\dfrac{1}{3.5}\right|\ge0;\)
.....................................
+) \(\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Leftrightarrow\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+.......+\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Leftrightarrow50x\ge0\)
\(\Leftrightarrow x\ge0\)
Khi \(x\ge0\) ta được :
+) \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3}\)
+) \(\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5}\)
.............................................
+) \(\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\)
\(\Leftrightarrow\left(x+\dfrac{1}{1.3}\right)+\left(x+\dfrac{1}{3.5}\right)+......+\left(x+\dfrac{1}{97.99}\right)=50x\)
\(\Leftrightarrow49x+\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{97.99}\right)=50x\)
\(\Leftrightarrow x=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{97}-\dfrac{1}{99}\)
\(\Leftrightarrow x=\dfrac{16}{99}\)
Vậy...
A\(A=\frac{1}{1.3}+..+\frac{1}{x\left(x+1\right)}\)
\(2A=\frac{1}{1}-\frac{1}{\left(x+1\right)}\)
\(A=\frac{x}{2.\left(x+1\right)}=\frac{8}{17}=\frac{16}{2.17}\)
X=16
\(\left[\frac{12}{11}-\left(\frac{1}{2}+\frac{1}{44}\right)\right].\left(x-0,2\right)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{25}{44}.\left(x-0,2\right)=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{9.11}\right)\)
\(x-0,2=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right):\frac{25}{44}\)
\(x-\frac{1}{5}=\frac{22}{25}.\left(1-\frac{1}{11}\right)=\frac{22}{25}.\frac{10}{11}=\frac{4}{5}\)
\(x=\frac{4}{5}+\frac{1}{5}\)
\(x=1\)
Câu 1
Ta có: 2x = 3y => x/3 = y/2 => x/21 = y/14(chia 2 vế với 7) (1)
Tacó: 5x = 7z => x/7 = z/5 => x/21 =z/15 (chia 2 vế với 3) (2)
Từ (1) và (2) ta có: x/21 = y/14 = z/15= 3x/63 = 7y/98 = 5z/75
Áp dụng t/c của dãy tỉ số = nhau, ta có:
x/21 = y/14 = z/15 = 3x/63 = 7y/98 = 5z/75 = (3x-7y+5z)/(63 -98+75) = 30/40=3/4
Khi đó: x/21 = 3/4 => x =63/4
y/14 = 3/4 => y = 21/2
z/15 = 3/4=> z = 45/24
Vậy x =63/4; y = 21/2; z = 45/24
Câu 2:
a) A= 1/3.5+1/5.7+..........+1/97.99
2A= 2/3.5 + 2/5.7 +...+ 2/97.99
2A=(1/3-1/5)+(1/5-1/7)+...+(1/97-1/99)
2A=1/3-1/99
2A= 32/99
A= 32/99 :2
A= 16/99
\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)