K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

\(\left|x-3\right|+\left|x+2\right|=7\)

-TH: \(x< -2\) thì ta được phương trình :

\(3-x+-x-2=7\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\left(c\right)\)

-TH: \(-2\le x< 3\) thì ta được phương trình:

\(3-x+x+2=7\)

\(\Leftrightarrow5=7\)(vô lí nên loại)

-TH: \(x\ge3\) thì ta được phương trình:

\(x-3+x+2=7\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\left(c\right)\)

Vậy nghiệm của phương trình là \(S=\left\{-3;4\right\}\)

14 tháng 9 2019

3a)Ta xét:

-TH: \(x< 0\) thì \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)

-TH: \(0< x< 2\) thì \(x>0\), \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\left(c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2< 0\\x-3< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< 2\\x< 3\end{matrix}\right.\)

\(\Rightarrow0< x< 2\)

-TH: \(2< x< 3\) thì \(x>0\), \(x-2>0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)

-TH: \(x>3\) thì \(x>0\), \(x-2>0\)\(x-3>0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2>0\\x-3>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x>3\end{matrix}\right.\)

\(\Rightarrow x>3\)

Vậy nghiệm của phương trình là 0<x<2 và x>3

b)Dựa vào câu a haha ta có:

-TH: \(x< 0\) thì \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)

\(\Rightarrow\left\{{}\begin{matrix}x< 0\\x< 2\\x< 3\end{matrix}\right.\)

\(\Rightarrow x< 0\)

-TH:\(2< x< 3\) thì \(x>0\), \(x-2>0\), \(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x< 3\end{matrix}\right.\)

\(\Rightarrow2< x< 3\)

Vậy nghiệm của phương trình là x<0 và 2<x<3

Không biết có đúng không nữa hiu

b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)

16 tháng 10 2019

e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)

\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)

\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)

Vậy ....

16 tháng 8 2019

1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c) TT

16 tháng 8 2019

a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)

=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)

=> \(\left|50x-140\right|=\left|25x+24\right|\)

=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)

=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)

Bài 2 : a. |2x - 5| = x + 1

 TH1 : 2x - 5 = x + 1

    => 2x - 5 - x = 1

    => 2x - x - 5 = 1

    => 2x - x = 6

    => x = 6

TH2 : -2x + 5 = x + 1

   => -2x + 5 - x = 1

   => -2x - x + 5 = 1

   => -3x = -4

   => x = 4/3

Ba bài còn lại tương tự

1 tháng 1 2017

Ta có : \(P=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}-2\right)}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)

\(=3\left(x+\frac{1}{x}\right)\ge6\) \(\left(x>0\right)\).

Vậy \(P_{Min}=6\) khi \(x=1.\)

Happy New year :)