K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Ta có : \(P=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}-2\right)}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)

\(=3\left(x+\frac{1}{x}\right)\ge6\) \(\left(x>0\right)\).

Vậy \(P_{Min}=6\) khi \(x=1.\)

Happy New year :)

3 tháng 7 2019

\(a,\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)

TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{x-2}{7}=0\Rightarrow x-2=0\Leftrightarrow x=2\)

TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow\frac{-x+3}{5}=0\Rightarrow-x+3=0\Leftrightarrow x=3\)

TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{x+4}{3}=0\Rightarrow x+4=0\Leftrightarrow x=-4\)

\(\Rightarrow x\in\left\{2;3;-4\right\}\)

3 tháng 7 2019

\(b,\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)

\(\Rightarrow\frac{5}{30}x+\frac{3}{30}x-\frac{8}{30}x+1=0\)

\(\Rightarrow\frac{5x+3x-8x}{30}+1=0\)

\(\Rightarrow1=0\)( vô lý )\(\Rightarrow x\in\varnothing\)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

31 tháng 3 2017

\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3

\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)

=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)

\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)

\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)

\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)

27 tháng 10 2019

\(\left(3-\frac{1}{2}x\right)\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3-\frac{1}{2}x=0\\\left|x+\frac{3}{4}\right|-\frac{5}{6}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\left|x+\frac{3}{4}\right|=\frac{5}{6}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=6\\x=\frac{1}{12}\\x=\frac{-19}{12}\end{cases}}\)

27 tháng 10 2019

\(\left(3-\frac{1}{2}x\right)\cdot\left(\left|x+\frac{3}{4}\right|-\frac{5}{6}\right)=0\)

\(\Rightarrow\hept{\begin{cases}3-\frac{1}{2}x=0\\\left|x+\frac{3}{4}\right|-\frac{5}{6}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=6\\x+\frac{3}{4}=\pm\frac{5}{6}\end{cases}}\)

Ta có

\(x+\frac{3}{4}=\pm\frac{5}{6}\)

\(\hept{\begin{cases}x+\frac{3}{4}=\frac{5}{6}\\x+\frac{3}{4}=-\frac{5}{6}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{12}\\x=-\frac{19}{12}\end{cases}}}\)

Vậy \(x\in\left\{3;\frac{1}{2};-\frac{19}{12}\right\}\)

6 tháng 9 2015

b, \(x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1=0\)

        \(0+1=0\)

=> x thuoc rong 

15 tháng 6 2016

a) Dễ thấy VT > 0;mà VT=VP

=>VP > 0 => 4x > 0=> x > 0

=>\(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)

=>BT đầu tương đương \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{6}\right)=4x\)

\(=>3x+1=4x=>x=1\)

15 tháng 6 2016

a)  Để đẳng thức xảy ra thì: x>0 (vì: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|>0\) )

Khi đó: \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)

=>\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)

<=>x=1

Vậy x=1

b)Điều kiện: \(x\ne-3;-10;-21;-34\)

\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

<=>\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

<=>\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)

=>x+34-x-3=x

<=>x=31 (nhận)

Vậy x=31