Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)
\(\Leftrightarrow\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1+\frac{x+324}{5}+1+\frac{25}{5}=5\)
\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Leftrightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Vì: \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\ne0\)\(\)
\(\Rightarrow x=-329\)
https://olm.vn/hoi-dap/question/129065.html
tham khảo ở đó bn nha
chúc hok tốt
\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)
\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
PS: Điều kiện xác đinh bạn tự làm nhé
c) Ta có : \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\)\(\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
Mà : \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)
Nên x + 2009 = 0 => x = -2009
a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)
\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)
b, Ta có : \(\left(x+5\right)^2-9x-45=0\)
\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)
TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)
c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)
\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )
e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)
a) \(ĐKXĐ:x\ne\pm2\)
\(D=\frac{3x}{x-2}+\frac{2}{x+2}-\frac{14x-4}{x^2-4}:\frac{x\left(x-1\right)}{x+2}\)
\(\Leftrightarrow D=\frac{3x^2+6x+2x-4-14x+4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{x\left(x-1\right)}\)
\(\Leftrightarrow D=\frac{3x^2-6x}{x\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow D=\frac{3x\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow D=\frac{3}{x-1}\)
b) Khi \(\left|x-1\right|-3=0\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\1-x=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)
Thay \(x=4\)vào D ta được :\(D=\frac{3}{4-1}=1\)
c) Để D có giá trị nguyên
\(\Leftrightarrow\frac{3}{x-1}\)có giá trị nguyên
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)
Loại bỏ giá trị \(x=\pm2\)không làm cho biểu thức có nghĩa
Vậy để D có giá trị nguyên \(\Leftrightarrow x\in\left\{0;4\right\}\)
Khi làm bài thì chỉnh lại giúp bạn cái đề:
\(D=\left(\frac{3X}{X-2}+\frac{2}{X+2}-\frac{14X-4}{X^2-4}\right):\frac{X\left(X-1\right)}{X+2}\)
Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)
<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)
<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)
<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)
<=>M=\(\frac{x+4}{x-4}\)
b) Thay x=\(\frac{-3}{8}\) vào M:
M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)
c)Hình như sai!
d)