Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 1:
\(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
\(\Rightarrow\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}-10=0\)
\(\Rightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-4\right)=0\)
\(\Rightarrow\frac{x-85-15}{15}+\frac{x-74-26}{13}+\frac{x-67-33}{11}+\frac{x-64-36}{9}=0\)
\(\Rightarrow\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Do \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x = 100.
Phương trình 3:
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4=0\)
\(\Rightarrow\left(\frac{1909-x}{91}+1\right)+\left(\frac{1907-x}{93}+1\right)+\left(\frac{1905-x}{95}+1\right)+\left(\frac{1903-x}{97}+1\right)=0\)
\(\Rightarrow\frac{1909-x+91}{91}+\frac{1907-x+93}{93}+\frac{1905-x+95}{95}+\frac{1903-x+97}{97}=0\)
\(\Rightarrow\frac{2000-x}{91}+\frac{2000-x}{93}+\frac{2000-x}{95}+\frac{2000-x}{97}=0\)
\(\Rightarrow\left(2000-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
Do \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
\(\Rightarrow2000-x=0\)
\(\Rightarrow x=2000\)
Vậy x = 2000.
a, \(2x-\frac{1}{2}=\frac{2x+1}{4}-\frac{1-2x}{8}\)
\(\Leftrightarrow\frac{1}{2}\left(4x-1\right)=\frac{1}{8}\left(6x+1\right)\)
\(\Leftrightarrow4\left(4x-1\right)=6x+1\)
\(\Leftrightarrow10x=5\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
b, \(\frac{x-3}{13}+\frac{x-3}{14}=\frac{x-3}{15}+\frac{x-3}{16}\)
\(\Leftrightarrow\frac{x-3}{13}+\frac{x-3}{14}-\frac{x-3}{15}-\frac{x-3}{16}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy x = 3
\(\frac{x-3}{13}+\frac{x-3}{14}=\frac{x-3}{15}+\frac{x-3}{16}\)
\(\Leftrightarrow\frac{x-3}{13}+\frac{x-3}{14}-\frac{x-3}{15}-\frac{x-3}{16}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=0+3\)
\(\Leftrightarrow x=3\)
\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)
\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)
\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)
\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)
\(\Leftrightarrow2015-x=0\)
\(\Leftrightarrow x=2015\)
KL : PT có nghiệm \(S=\left\{2015\right\}\)
g) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\left(\frac{x+2+98}{98}\right)+\left(\frac{x+4+96}{96}\right)=\left(\frac{x+6+94}{94}\right)+\left(\frac{x+8+92}{92}\right)\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0.\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=0-100\)
\(\Leftrightarrow x=-100.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-100\right\}.\)
h) \(\frac{x-12}{77}+\frac{x-11}{78}=\frac{x-74}{15}+\frac{x-73}{16}\)
\(\Leftrightarrow\left(\frac{x-12}{77}-1\right)+\left(\frac{x-11}{78}-1\right)=\left(\frac{x-74}{15}-1\right)+\left(\frac{x-73}{16}-1\right)\)
\(\Leftrightarrow\left(\frac{x-12-77}{77}\right)+\left(\frac{x-11-78}{78}\right)=\left(\frac{x-74-15}{15}\right)+\left(\frac{x-73-16}{16}\right)\)
\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}=\frac{x-89}{15}+\frac{x-89}{16}\)
\(\Leftrightarrow\frac{x-89}{77}+\frac{x-89}{78}-\frac{x-89}{15}-\frac{x-89}{16}=0\)
\(\Leftrightarrow\left(x-89\right).\left(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\right)=0\)
Vì \(\frac{1}{77}+\frac{1}{78}-\frac{1}{15}-\frac{1}{16}\ne0.\)
\(\Leftrightarrow x-89=0\)
\(\Leftrightarrow x=0+89\)
\(\Leftrightarrow x=89.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{89\right\}.\)
Chúc bạn học tốt!
\(\Leftrightarrow\left(\frac{x+14}{86}+1\right)+\left(\frac{x+15}{85}+1\right)+\left(\frac{x+16}{84}+1\right)+\left(\frac{x+17}{83}+1\right)+\left(\frac{166}{4}-4\right)=0\)
\(\Leftrightarrow\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x+100\right)=0\Rightarrow x=-100\left(\text{vì }\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)
\(\frac{x+1}{12}+\frac{x+2}{13}=\frac{x+3}{14}+\frac{x+4}{15}\) .Trừ 1 ở mỗi hạng tử của 2 vế ,ta có :
\(\frac{x-11}{12}+\frac{x-11}{13}=\frac{x-11}{14}+\frac{x-11}{15}\Rightarrow\left(\frac{1}{12}+\frac{1}{13}\right)\left(x-11\right)=\left(\frac{1}{14}+\frac{1}{15}\right)\left(x-11\right)\)
\(\Rightarrow\left[\left(\frac{1}{12}+\frac{1}{13}\right)-\left(\frac{1}{14}+\frac{1}{15}\right)\right]\left(x-11\right)=0\)
\(\frac{1}{12}>\frac{1}{14};\frac{1}{13}>\frac{1}{15}\Rightarrow\frac{1}{12}+\frac{1}{13}>\frac{1}{14}+\frac{1}{15}\Rightarrow\left(\frac{1}{12}+\frac{1}{13}\right)-\left(\frac{1}{14}+\frac{1}{15}\right)\ne0\)
\(\Rightarrow x-11=0\Rightarrow x=11\)
\(\frac{x+1}{12}+\frac{x+2}{13}=\frac{x+3}{14}+\frac{x+4}{15}\)
\(\Leftrightarrow\frac{x+1}{12}-1+\frac{x+2}{13}-1=\frac{x+3}{14}-1+\frac{x+4}{15}-1\)
\(\Leftrightarrow\frac{x-11}{12}+\frac{x-11}{13}=\frac{x-11}{14}+\frac{x-11}{15}\)
\(\Leftrightarrow\frac{x-11}{12}+\frac{x-11}{13}-\frac{x-11}{14}-\frac{x-11}{15}=0\)
\(\Leftrightarrow\left(x-11\right)\left(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\right)=0\)
Mà: \(\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\ne0\)
\(\Rightarrow x-11=0\Rightarrow x=11\)