Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x\left(x-1\right)+7⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{2;0;8;-6\right\}\)
Vì 112 chia hết cho x, 140 chia hết cho x nên x thuộc ƯCLN của 112 và 140
ƯCLN(112;140) = 28
Ư(28) = {1;2;4;7;14;28}
Vì 10 < x < 20 nên x = 14
ta có 6*(6x-11y)-5*(x+7y)=31x-31y chia hết cho 31=>6x - 11y chia hết cho 31 thì x + 7y chia hết cho 31. Ngược lại nếu x + 7y chia hết cho 31 thì 6x - 11y chia hết cho 31
ta có 6*(6x+11y)-5*(x+7y)=31x+31y chia hết cho 31=>6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31. Ngược lại nếu x + 7y chia hết cho 31 thì 6x + 11y chia hết cho 31
\(6⋮\left(x-1\right)\)
\(\Rightarrow\left(x-1\right)\inƯ\left(6\right)\in\left\{1,2,3,6\right\}\)
Vậy \(x\in\left\{2,3,4,7\right\}\)
Ta có: \(6⋮x-1\Rightarrow x-1\inƯ\left(6\right)\)
\(Ư\left(6\right)=\left\{\pm1,\pm2,\pm3,\pm6\right\}\)
Ta có bảng sau:
Vậy \(x\in\left\{-5,-2,-1,0,2,3,4,7\right\}\)