Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co (2x-1)(3x+1)+(3x+4)(3-2x)=5
(=)6x2-3x+2x-1+6x-6x2+12-8x=5
(=)-4x+11=5
(=)-4x=-6
(=)x=3/2
(2x-1)(3x+1)+(3x-4)(3-2x)=5
<=> 6x2+2x-3x-1+9x-6x2-12+8x=5
<=> 16x-13=5
<=> 16x = 18
<=> x=9/8
\(x^4-2x^3-2x^2+3x+2=0\)
\(\Leftrightarrow x^4-2x^3-2x^2+4x-x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)-\left(2x^2-4x\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x^3\left(x-2\right)-2x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-2x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-x-x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^3-x\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^2-x\right)\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x-1\right)=0\)
Đến đây ez r
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
(2x-1)2-(2x+3).(2x-3)=0
<=>4x2-4x+1-(4x2-9)=0
<=>4x2-4x+1-4x2-9=0
<=>-4x-8=0
<=>-4x=8
<=>x=-2
a ) \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Leftrightarrow3x^2-3x-3x^2+2x=5\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy phương trình có nghiệm x = - 5 .
a) x^2 - 11x + 18 = 0
=> x^2 - 2x - 9x + 18 = 0
=> x ( x- 2 ) - 9 ( x- 2 ) = 0
=> ( x- 9 )( x- 2 )= 0
=> x- 9 = 0 hoặc x - 2 = 0
=> x= 9 hoặc x = 2
\(3x\left(2x-1\right)-1-2x=0\)
\(\Leftrightarrow6x^2-3x-1-2x=0\)
\(\Leftrightarrow6x^2-5x-1=0\)
chắc bài này sai đề. sửa lại:
\(3x\left(2x-1\right)+1-2x=0\)
\(\Leftrightarrow3x\left(2x-1\right)-\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{1}{2}\end{cases}}\)