Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{x-1}+\dfrac{x-2}{x+2}+\dfrac{x-3}{x+3}+\dfrac{x+4}{x-4}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x-4\right)+\left(x-2\right)\left(x-1\right)\left(x+3\right)\left(x-4\right)+\left(x-3\right)\left(x-1\right)\left(x+2\right)\left(x-4\right)+\left(x+4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow4x^4+20x-96=0\)
\(\Leftrightarrow4\left(x^4+5x-24\right)=0\)
\(\Leftrightarrow x^4+5x-24=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2,45...\\x=1,94...\end{matrix}\right.\)
Vậy: \(S=\left\{-2,45...;1,94...\right\}\)
Đối với dạng này thì em biến đổi 1 vế thành tích các đa thức còn 1 vế là số nguyên, sau đó tìm ước số nguyên, cho các đa thức bằng ước đó là tìm được .
2x2 + 2xy - 3x - y = 5
( 2x2 + 2xy ) - x - y - 2x + 1 = 6
2x( x + y) - ( x + y) - (2x -1) = 6
( x+y) ( 2x - 1) - ( 2x -1) = 6
(2x -1) ( x + y - 1) = 6
vì 6 = 2.3 => Ư(6) = { -6; -3; - 2; -1; 1; 2; 3; 6}
Nên với x, y \(\in\) Z thì ( 2x-1)(x+y -1) = 6 khi và chỉ khi :
th1 : \(\left\{{}\begin{matrix}2x-1=-1\\x+y-1=-6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}2x-1=1\\x+y-1=6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\y=6\end{matrix}\right.\)
th3 : \(\left\{{}\begin{matrix}2x-1=-2\\x+y-1=-3\end{matrix}\right.\) => x = -1/2 (loại)
th4 : \(\left\{{}\begin{matrix}2x-1=2\\x+y-1=6\end{matrix}\right.\) => x = 3/2 (loại)
th5 : \(\left\{{}\begin{matrix}2x-1=-3\\x+y-1=-2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
th6 : \(\left\{{}\begin{matrix}2x-1=3\\x+y-1=2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
th7 : \(\left\{{}\begin{matrix}2x-1=-6\\x+y-1=-1\end{matrix}\right.\) => x = -5/2 (loại)
th8 : \(\left\{{}\begin{matrix}2x-1=6\\x+y-1=1\end{matrix}\right.\) => x 7/2 (loại)
Kết luận các cặp giá trị nguyên của x; y thỏa mãn đề bài là:
(x; y) =(0; -5); (1; 6); ( -1; 0); (2; 1)
ở th4 mình viết nhầm chút nhé . em sửa lại thành cho đúng em nhé
\(\left\{{}\begin{matrix}2x-1=2\\x+y-1=3\end{matrix}\right.\)
a) 5(2x -1) - 4(8 - 3x) = 7
<=> 10x - 5 - 32 + 12x = 7
<=> 22x = 44
<=> x =2
Vậy x = 2 là nghiệm phương trình
b) 7(2x - 5) - 5(7x - 2) + 2(5x - 7) = (x - 2) - (x + 4)
<=> 14x - 35 - 35x + 10 + 10x - 14 = x - 2 - x - 4
<=> -11x - 39 = - 6
<=> -11x = 33
<=> x = -3
Vậy x = -3 là nghiệm phương trình
\(a,10x-5-32+12x=7\)
\(22x=44\)
\(x=2\)
\(b,14x-35-35x+10+10x-14=x-2-x-4\)
\(-11x-39=-6\)
\(-11x=-33\)
\(x=3\)
x^7+x^5+1=x^7+x^6+x^5-x^6+1
=x^5(x^2+x+1)-[(x^3)^2-1]
=x^5(x^2+x+1)-(x^3+1)(x^3-1)
=x^5(x^2+x+1)-(x^3+1)(x-1)(x^2+x+1)
=(x^2+x+1)[x^5-(x^3+1)(x-1)]
=(x^2+x+1)(x^5-x^4+x^3-x+1)
a/ (x-3)2 - 4 = 0
=> (x-3-2)(x-3+2)=0
=> (x-5)(x-1)=0
=> x = 5 hoặc x=1
Tìm x, biết:
1) 2x ( x - 5) - x ( 2x - 4 ) = 15
<=> 2x2 - 10x - 2x2 + 4x - 15 = 0
<=> -6x - 15 = 0
<=> -6x = 15
<=> x = -15/6
2) ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6
<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0
<=> -4x = -16
<=> x = 4
3) 4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x
<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0
<=> x + 4 = 0
<=> x = -4
4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5
<=> 2x2 + x + 6x + 3 - 2x2 - 4x + 5 = 0
<=> 3x + 8 = 0
<=> 3x = -8
<=> x = -8/3
5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0
<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0
.......
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0
<=> -2x + 40 = 0
<=> -2x = -40
<=> x = 20
Còn lại tương tự ....
2x(x-7)-4(x-7)=0
<=>(2x-4)(x-7)=0
<=>2x-4=0 hoặc x-7=0
<=>x=2 hoặc x=7
2x( x - 7 ) - 4( x - 7 ) = 0
=> 2x2 - 14 - 4x + 28 = 0
=> 2x2 - 4x + 14 = 0
tự giải nốt dùng hằng đẳng thức ( a - b )2