K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2022

Đối với dạng này thì em biến đổi 1 vế thành tích các đa thức còn 1 vế là số nguyên, sau đó tìm ước số nguyên, cho các đa thức bằng ước đó là tìm được .

                         2x2 + 2xy - 3x - y = 5

                ( 2x2 + 2xy ) - x - y - 2x + 1 = 6

                 2x( x + y) - ( x + y)  - (2x  -1) = 6

                     ( x+y) ( 2x - 1) - ( 2x -1) = 6

                       (2x -1) ( x + y - 1) = 6

                      vì 6 = 2.3 =>  Ư(6) = { -6; -3; - 2; -1; 1; 2; 3; 6}

        Nên  với x, y  \(\in\) Z thì  ( 2x-1)(x+y -1) = 6  khi và chỉ khi :

                       th1 : \(\left\{{}\begin{matrix}2x-1=-1\\x+y-1=-6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\)

                      th2: \(\left\{{}\begin{matrix}2x-1=1\\x+y-1=6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\y=6\end{matrix}\right.\)

                     th3 : \(\left\{{}\begin{matrix}2x-1=-2\\x+y-1=-3\end{matrix}\right.\) => x = -1/2 (loại)

                     th4 : \(\left\{{}\begin{matrix}2x-1=2\\x+y-1=6\end{matrix}\right.\) => x = 3/2 (loại)

                     th5 :  \(\left\{{}\begin{matrix}2x-1=-3\\x+y-1=-2\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

                     th6 : \(\left\{{}\begin{matrix}2x-1=3\\x+y-1=2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

                    th7 : \(\left\{{}\begin{matrix}2x-1=-6\\x+y-1=-1\end{matrix}\right.\) => x = -5/2 (loại)

                     th8 : \(\left\{{}\begin{matrix}2x-1=6\\x+y-1=1\end{matrix}\right.\) => x 7/2 (loại)

    Kết luận các cặp giá trị nguyên của x; y thỏa mãn đề bài là:

      (x; y) =(0; -5); (1; 6); ( -1; 0); (2; 1)

 

 

 

24 tháng 12 2022

ở th4 mình viết nhầm chút nhé . em sửa lại thành  cho đúng em nhé 

                  \(\left\{{}\begin{matrix}2x-1=2\\x+y-1=3\end{matrix}\right.\) 

7 tháng 4 2020

3x^2-y^2-2xy-2x-2y+40=0

<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0

Đặt x-y=a: 3x+y=b

PT<=>ab+a-b-1=-41

<=>(b+1)(a-1)=-41

  Đến đây bạn tự giải nốt nha. cho xin phát :)

7 tháng 4 2020

nguyễn trí tâm tks bn

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

24 tháng 6 2015

hình như lớp 8 mà mình bấm bị lộn ai bik chỉ mình vs

 

11 tháng 8 2016

a)  3x( 2x + 3) -(2x+5)(3x-2)=8

<=> 6x^2+9x-6x^2+4x-15x+10=8

<=> -2x+10=8

<=> -2x= 8-10 = -2

<=> x=1

b)  (3x-4)(2x+1)-(6x+5)(x-3)=3

<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3

<=> -8x+11=3

<=> -8x= -8

<=> x=1

c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6

<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6

<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6

<=> 12x^2+ 26x-10-12x^2-18x+12=6

<=> 8x+2=6

<=> 8x=4

<=> x= 1/2

d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27

<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27

<=> 3x2y+3xy2-(x+y)3+y3=27

<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27

<=> -x3=27

<=> x= \(-\sqrt[3]{27}\)= -3

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

26 tháng 10 2019

\(a)xy+3x-2y=11\)

\(\Leftrightarrow xy+3x-2y-6=5\)

\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)

\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)

26 tháng 10 2019

\(b)2x^2-2xy+x-y=12\)

\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)

\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)

\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)

\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)

Vì 2x+1 luôn lẻ

\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

NM
9 tháng 9 2021

Bài 1 

ta có a+3+b-3 =a +b chia hết cho 4

nên (b-a )(a+b) cũng chia hết cho 4

bài 2.

ta có: \(M=6x^2-5x-6-12xy+6y^2+6y-3x+2y+2027\)

\(=6\left(x-y\right)^2-8\left(x-y\right)+2021=24-16+2021=2029\)