K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

a) Để đẳng thức xảy ra thì: 101x\(\ge\)0=>x\(\ge\)0

Suy ra: \(x+\frac{1}{101}+x+\frac{2}{101}+....+x+\frac{100}{101}=101x\)

<=>\(100x+\frac{1+2+....+100}{101}=101x\)

<=>x=\(\frac{\frac{\left(1+100\right).100}{2}}{101}=50\)

 

11 tháng 12 2016

phan b lap bang xet dau

x -5 0,5

x+5 0 /

1-2x / 0

voi x<-5 ta co pt: -x-5-1+2x=x

-6=0(loai)

voi -5=<x=<0,5 :x+5-1+2x=x

2x=-2(nhan)

voi x>0,5: x+5+1-2x=x

x=3(nhan)

21 tháng 11 2019

Có 

Chọn đáp án A.

18 tháng 1 2016

1)

x=5-a

x=a-2

2)

A x=b-a

B x=a-b

15 tháng 1 2017

bài 1:

a) a + x = 5

<=> x = 5-a (thỏa mãn)

b) a - x = 2

<=> x = a-2 ( thỏa mãn)

bài 2:

a) a + x = b

<=> x = b-a ( thỏa mãn)

b) a - x = b

<=> x= b-a ( thỏa mãn)

20 tháng 8 2018

Chọn D

3 tháng 3 2017

29 tháng 3 2016

Ta có:

\(A=\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\)

\(\Rightarrow2A=2.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}\right)=2.\frac{2015}{2017}\)

\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{4030}{2017}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{4030}{2017}\)

\(=\frac{1}{2}-\frac{1}{x+1}=\frac{4030}{2017}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{4030}{2017}\)

Bạn xem lại đề

29 tháng 3 2016

Đề đúng rồi. co giao minh cung vua giang roi

29 tháng 4 2016

Ta có:

\(A=\left|x-4\right|+\left|x-2020\right|=\left|x-4\right|+\left|2020-x\right|\ge x-4+2020-x=2016\)

Dấu "=" xảy ra <=> x - 4 \(\ge0\)

                          và 2020 - x \(\ge0\)

<=> \(x\ge4\) và \(x\le2020\)

\(\Leftrightarrow4\le x\le2020\)

Vậy A đạt GTNN là 2016 \(\Leftrightarrow4\le x\le2020\)

28 tháng 4 2016

7< y : 4 < 9

8 tháng 4 2016

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\) E  Z

<=>4 chia hết cho \(\sqrt{x}-3\)

<=>\(\sqrt{x}-3\) E Ư(4)={-4;-2;-1;1;2;4}

+)\(\sqrt{x}-3=-4=>\sqrt{x}=-1\) (loại  vì \(\sqrt{x}\) >= 0)

+)\(\sqrt{x}-3=-2=>\sqrt{x}=1=>x=1\)

+)\(\sqrt{x}-3=-1=>\sqrt{x}=2=>x=4\)

+)\(\sqrt{x}-3=1=>\sqrt{x}=4=>x=16\)

+)\(\sqrt{x}-3=2=>\sqrt{x}=5=>x=25\)

+)\(\sqrt{x}-3=4=>\sqrt{x}=7=>x=49\)

Vậy x E {1;4;16;25;49} thì thỏa mãn đề bài

 

 

5 tháng 7 2019

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)=1+\(\frac{4}{\sqrt{x}-3}\)

Để A \(\in\) Z\(\Leftrightarrow\)\(\frac{4}{\sqrt{x}-3}\)\(\in\) Z

\(\Leftrightarrow\)\(\sqrt{x}-3\) \(\in\) ư(4)=4;-4;1;-1;2;-

\(\sqrt{x}-3\) 1 -1 2 -2 4 -4
\(\sqrt{x}\) 4 2 5 1 7 -1
\(x\) 16 4 25 1 49 loại

Vậy x\(\in\)\(\left\{1;4;16;25;49\right\}\)thì A\(\in\)Z

a)A=x+3/x-2

A=x-2+5/x-2

A=1+5/x-2

vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2

x-2 thuộc ước của 5

x-2 thuộc -5;-1;1;5

x = -3;1;3 hoặc 7

giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2

b)để B= 1-2x/2+x thuộc Z thì

1-2x phải chia hết cho 2+x

nên 1-2x-4+4  phải chia hết cho x+2

1-(2x+4)+4  phải chia hết cho x+2

1+4-[2(x+2]  phải chia hết cho x+2

5 -[2(x+2] phải chia hết cho x+2

vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2

suy ra x+2 thuộc ước của 5 

  x+2 thuộc -5;-1;1;5

x=-7;-3;-1;3

giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1

19 tháng 4 2017

bạn làm sai 1 chút ở đầu