K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

Ta có:

\(A=\left|x-4\right|+\left|x-2020\right|=\left|x-4\right|+\left|2020-x\right|\ge x-4+2020-x=2016\)

Dấu "=" xảy ra <=> x - 4 \(\ge0\)

                          và 2020 - x \(\ge0\)

<=> \(x\ge4\) và \(x\le2020\)

\(\Leftrightarrow4\le x\le2020\)

Vậy A đạt GTNN là 2016 \(\Leftrightarrow4\le x\le2020\)

28 tháng 4 2016

7< y : 4 < 9

24 tháng 1 2016

a) ta có: (x-3,5)2 lớn hơn hoặc bằng 0

=> (x-3,5)2 +2 >= 2

=> GTNN của bt (x-3,5)2+2 là 2

khi x-3,5 =0

      => x= 3,5

b) ta có: (2x-3)4 lớn hơn hoặc bằng 0

=> (2x-3)4 -5 >= -5

=> GTNN của bt (2x-3)- 5 là -5

khi 2x-3 = 0

=> 2x= 3

=> x= 3/2

tick mk nhìu nhé haha

24 tháng 1 2016

 hám like quá

24 tháng 2 2017

haha Ánh gầy

17 tháng 4 2016

lớp 7 hả

10 tháng 6 2016

A=x

20 tháng 7 2016

a) A=x^2+2

b) mình nghĩ x thuộc tập hợp R

c)GTNN của A=1/4 khi x=1/2

6 tháng 3 2016

Sai cậu à, mình cũng nhập vào số 5, nhưng thật tiếc là sai

Ta luôn có \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)  và  \(\left|x-y\right|=\left|y-x\right|\)

\(\Rightarrow\left|x-2\right|=\left|2-x\right|;\left|x-4\right|=\left|4-x\right|;...;\left|x-8\right|=\left|8-x\right|;\left|x-10\right|=\left|10-x\right|\)

\(\Rightarrow A=\left|x-1\right|+\left|2-x\right|+\left|x+3\right|+\left|4-x\right|+...+\left|x-9\right|+\left|10-x\right|\)

\(\Rightarrow A\ge\left|x-1+2-x+x-3+4-x+...+x-9+10-x\right|\)

\(=\left|\left(x-x+x-x+x-x+...+x-x\right)+\left(2-1\right)+\left(4-3\right)+...+\left(10-9\right)\right|\)

\(=\left|0+1+1+1+1+1\right|\)

\(=5\)

\(\Rightarrow A\ge5\)

\(\Rightarrow\) GTNN của A = 5 tại \(\left(x-1\right)\left(2-x\right)\left(x-3\right)...\left(x-10\right)\ge0\)

 

 

 

8 tháng 12 2016

\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\) nên A luôn xác định

\(A=\frac{-x^2-2x-5}{x^2+2x+2}\Leftrightarrow x^2\left(A+1\right)+2x\left(A+1\right)+\left(2A+5\right)=0\)

Để A tồn tại giá trị nhỏ nhất thì tồn tại giá trị x thỏa mãn min A , vậy thì ta cần tìm điều kiện để phương trình \(x^2\left(A+1\right)+2x\left(A+1\right)+\left(2A+5\right)=0\) có nghiệm.

\(\Delta'=\left(A+1\right)^2-\left(A+1\right)\left(2A+5\right)=-A^2-5A-4\)

\(=-\left(A+1\right)\left(A+4\right)\ge0\)

\(\Leftrightarrow\left(A+1\right)\left(A+4\right)\le0\Leftrightarrow-4\le A\le-1\)

Vậy min A = -4 , tại x = -1

 

 

10 tháng 3 2016

Khó thế! Cậu cần gấp ko? Nếu ko thì sáng mai đem hỏi Khánh Linh ấy! Cậu ấy siêu hơn tớ

26 tháng 4 2016

A=(x+1)*(x+2)*(x+3)*(x+4)

Ta có (x+1);(x+2);(x+3) và (x+4) sẽ xảy ra các trường hợp sau 

Th1:(x+1);(x+2);(x+3) và (x+4) đều là số âm

Nên tích (x+1)*(x+2)*(x+3)*(x+4) sẽ là số dương

Hay (x+1)*(x+2)*(x+3)*(x+4)>0

Th2:1 trong các số (x+1);(x+2);(x+3);(x+4) sẽ=0

Nên (x+1)*(x+2)*(x+3)*(x+4)=0

Th2:các số (x+1);(x+2);(x+3);(x+4) đều là số dương 

Nên (x+1)*(x+2)*(x+3)*(x+4)>0

Trong các trường hợp trên thì ta thấy trường hợp có GTNN là th2 nên biểu thức A sẽ có giá trị nhỏ nhất là 0(tick nha)

12 tháng 7 2016

A=(x+1)(x+2)(x+3)(x+4)=(x+1)(x+4)(x+2)(x+3)=(x^2+5x+4)(x^2+5x+6)

Đặt x^2+5x=t =>A=(t+4)(t+6)=t^2+10t+24=(t+5)^2-1 lớn hơn hoặc bằng -1 

Dấu bằng xảy ra khi t=-5 từ đó giải ra x

 

3 tháng 3 2019

a, Ta có: \(\left|x-\dfrac{2}{7}\right|\ge0\forall x\)

\(\Rightarrow\left|x-\dfrac{2}{7}\right|+0,5\ge0,5\forall x\)

Hay: \(A\ge0,5\forall x\)

=> Min A = 0,5 tại \(\left|x-\dfrac{2}{7}\right|=0\Rightarrow x=\dfrac{2}{7}\)

b, \(B=\left|x-5\right|+\left|x-2\right|=\left|x-5\right|+\left|2-x\right|\ge\left|x-5+2-x\right|\) =3

=> Min B = 3 tại \(\left(x-5\right)\left(2-x\right)>0\)

=)) Làm nốt

c,Tương tự b

=.= hk tốt!!