Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: (x-3,5)2 lớn hơn hoặc bằng 0
=> (x-3,5)2 +2 >= 2
=> GTNN của bt (x-3,5)2+2 là 2
khi x-3,5 =0
=> x= 3,5
b) ta có: (2x-3)4 lớn hơn hoặc bằng 0
=> (2x-3)4 -5 >= -5
=> GTNN của bt (2x-3)4 - 5 là -5
khi 2x-3 = 0
=> 2x= 3
=> x= 3/2
tick mk nhìu nhé
a) A=x^2+2
b) mình nghĩ x thuộc tập hợp R
c)GTNN của A=1/4 khi x=1/2
Sai cậu à, mình cũng nhập vào số 5, nhưng thật tiếc là sai
Ta luôn có \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và \(\left|x-y\right|=\left|y-x\right|\)
\(\Rightarrow\left|x-2\right|=\left|2-x\right|;\left|x-4\right|=\left|4-x\right|;...;\left|x-8\right|=\left|8-x\right|;\left|x-10\right|=\left|10-x\right|\)
\(\Rightarrow A=\left|x-1\right|+\left|2-x\right|+\left|x+3\right|+\left|4-x\right|+...+\left|x-9\right|+\left|10-x\right|\)
\(\Rightarrow A\ge\left|x-1+2-x+x-3+4-x+...+x-9+10-x\right|\)
\(=\left|\left(x-x+x-x+x-x+...+x-x\right)+\left(2-1\right)+\left(4-3\right)+...+\left(10-9\right)\right|\)
\(=\left|0+1+1+1+1+1\right|\)
\(=5\)
\(\Rightarrow A\ge5\)
\(\Rightarrow\) GTNN của A = 5 tại \(\left(x-1\right)\left(2-x\right)\left(x-3\right)...\left(x-10\right)\ge0\)
VÌ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\) nên A luôn xác định
\(A=\frac{-x^2-2x-5}{x^2+2x+2}\Leftrightarrow x^2\left(A+1\right)+2x\left(A+1\right)+\left(2A+5\right)=0\)
Để A tồn tại giá trị nhỏ nhất thì tồn tại giá trị x thỏa mãn min A , vậy thì ta cần tìm điều kiện để phương trình \(x^2\left(A+1\right)+2x\left(A+1\right)+\left(2A+5\right)=0\) có nghiệm.
\(\Delta'=\left(A+1\right)^2-\left(A+1\right)\left(2A+5\right)=-A^2-5A-4\)
\(=-\left(A+1\right)\left(A+4\right)\ge0\)
\(\Leftrightarrow\left(A+1\right)\left(A+4\right)\le0\Leftrightarrow-4\le A\le-1\)
Vậy min A = -4 , tại x = -1
Khó thế! Cậu cần gấp ko? Nếu ko thì sáng mai đem hỏi Khánh Linh ấy! Cậu ấy siêu hơn tớ
A=(x+1)*(x+2)*(x+3)*(x+4)
Ta có (x+1);(x+2);(x+3) và (x+4) sẽ xảy ra các trường hợp sau
Th1:(x+1);(x+2);(x+3) và (x+4) đều là số âm
Nên tích (x+1)*(x+2)*(x+3)*(x+4) sẽ là số dương
Hay (x+1)*(x+2)*(x+3)*(x+4)>0
Th2:1 trong các số (x+1);(x+2);(x+3);(x+4) sẽ=0
Nên (x+1)*(x+2)*(x+3)*(x+4)=0
Th2:các số (x+1);(x+2);(x+3);(x+4) đều là số dương
Nên (x+1)*(x+2)*(x+3)*(x+4)>0
Trong các trường hợp trên thì ta thấy trường hợp có GTNN là th2 nên biểu thức A sẽ có giá trị nhỏ nhất là 0(tick nha)
a, Ta có: \(\left|x-\dfrac{2}{7}\right|\ge0\forall x\)
\(\Rightarrow\left|x-\dfrac{2}{7}\right|+0,5\ge0,5\forall x\)
Hay: \(A\ge0,5\forall x\)
=> Min A = 0,5 tại \(\left|x-\dfrac{2}{7}\right|=0\Rightarrow x=\dfrac{2}{7}\)
b, \(B=\left|x-5\right|+\left|x-2\right|=\left|x-5\right|+\left|2-x\right|\ge\left|x-5+2-x\right|\) =3
=> Min B = 3 tại \(\left(x-5\right)\left(2-x\right)>0\)
=)) Làm nốt
c,Tương tự b
=.= hk tốt!!
Ta có:
\(A=\left|x-4\right|+\left|x-2020\right|=\left|x-4\right|+\left|2020-x\right|\ge x-4+2020-x=2016\)
Dấu "=" xảy ra <=> x - 4 \(\ge0\)
và 2020 - x \(\ge0\)
<=> \(x\ge4\) và \(x\le2020\)
\(\Leftrightarrow4\le x\le2020\)
Vậy A đạt GTNN là 2016 \(\Leftrightarrow4\le x\le2020\)
7< y : 4 < 9