K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(P=\dfrac{4\sqrt{x}+3}{x+\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

Để P nguyên thì \(\sqrt{x}+3⋮\sqrt{x}\)

mà \(\sqrt{x}⋮\sqrt{x}\)

nên \(3⋮\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}\inƯ\left(3\right)\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;-1;3;-3\right\}\)

mà \(\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}\in\left\{1;3\right\}\)

\(\Leftrightarrow x\in\left\{1;9\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{1;9\right\}\)

Vậy: Để P nguyên thì \(x\in\left\{1;9\right\}\)

14 tháng 8 2020

Ta có: \(A=\frac{\sqrt{x}+7}{\sqrt{x}+4}=\frac{\left(\sqrt{x}+4\right)+3}{\sqrt{x}+4}=1+\frac{3}{\sqrt{x}+4}\)

a) Vì \(\sqrt{x}+4\ge4>3\left(\forall x\right)\)

\(\Rightarrow\frac{3}{\sqrt{x}+4}\) luôn không nguyên

=> A luôn không nguyên

b) Không thể tìm được giá trị nhỏ nhất của A, ta chỉ có thể tìm được GTLN:

\(\sqrt{x}+4\ge4\left(\forall x\right)\)

\(\Rightarrow\frac{3}{\sqrt{x}+4}\le\frac{3}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max(A) = 7/4 khi x = 0

27 tháng 7 2016

\(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}=\frac{\sqrt{x}-1+4}{\sqrt{x}-1}=1+\frac{4}{\sqrt{x}-1}\)

Để P đạt giá trị nguyên thì \(\frac{4}{\sqrt{x}-1}\) đạt giá trị nguyên

<=>4 chia hết cho \(\sqrt{x}-1\)

<=>\(\sqrt{x}-1\inƯ\left(4\right)\)

<=>\(\sqrt{x}-1\in\left\{-4;-2;-1;1;2;4\right\}\)

<=>\(\sqrt{x}\in\left\{-3;-1;0;2;3;5\right\}\)

<=>\(x\in\left\{0;4;9;25\right\}\)

Cách giải lớp 6 á, thông cảm :)

27 tháng 7 2016

rút gọn A= ( \(\left(\sqrt{26}+5\sqrt{2}\right)\sqrt{19-5\sqrt{13}}\)

30 tháng 5 2023

P nguyên <=> \(\dfrac{x-5}{\sqrt{x}+1}\) nguyên

<=> \(\dfrac{x-1}{\sqrt{x}+1}-\dfrac{4}{\sqrt{x}+1}\) nguyên

<=> \(\sqrt{x}-1-\dfrac{4}{\sqrt{x}+1}\) nguyên

=> \(\sqrt{x}+1\inƯ\left(4\right)=\left\{1;2;4\right\}\)  (vì \(\sqrt{x}+1>0\forall x\in N\))

...

4 tháng 1 2017

a)x=-2

b) GTLN=6 khi x=0

4 tháng 1 2017

c);x=1 bạn cần chi tiết không?

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Lời giải:

ĐKXĐ: $x>0$

Có: $C=\sqrt{x}+\frac{2}{\sqrt{x}}\geq 2\sqrt{2}$ theo BĐT AM-GM

Vậy $C_{\min}=2\sqrt{2}$. Giá trị này đạt tại $\sqrt{x}=\frac{2}{\sqrt{x}}$

$\Leftrightarrow x=2$ 

 

21 tháng 6 2023

`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`

Ta cần tìm `max(5/(sqrtx-2))`

Nếu `0<=x<4` thì `5/(sqrtx-2)<0`

Nếu `x>4` thì `5/(sqrtx-2)>0`

Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`

`=>sqrtx-2>=sqrt5-2`

`=>5/(sqrtx-2)<=5/(sqrt5-2)`

`=>C<=1+5/(sqrt5-2)=11+sqrt5`

Vậy `C_(max)=11+sqrt5<=>x=5`

16 tháng 11 2021

\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)

16 tháng 11 2021

xin làm thêm câu c,d nữa đi ạ

 

\(A=\sqrt{x}+\dfrac{2}{\sqrt{x}}\ge2\cdot\sqrt{\sqrt{x}\cdot\dfrac{2}{\sqrt{x}}}=2\sqrt{2}\)

Dấu '=' xảy ra khi \(\sqrt{x}\cdot\sqrt{x}=2\)

hay \(x=2\)