Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+1=x+y\)
\(\Leftrightarrow xy-x-y+1=0\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy \(x=1;y=1\)
Ta có: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\)
\(\Leftrightarrow\left(x^2+2+\frac{1}{x^2}\right)+\left(x^2-xy+\frac{y^2}{4}\right)+xy=2\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)
\(\Rightarrow2-xy\ge0\)
\(\Rightarrow xy\le2\)
\(x^2-2xy+y^2+3x-3y-4=0\)
\(\Leftrightarrow\left(x-y\right)^2+3\left(x-y\right)-4=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-y+3\right)-4=0\)
Thay y = 3 vào biểu thức trên ta được :
\(x\left(x-3\right)-4=0\)
\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\Leftrightarrow x=4;x=-1\)
Vậy với y = 3 thì x = 4 ; x = -1
Thay y = 3 vào bthuc ta được :
x2 - 6x + 9 + 3x - 9 - 4 = 0
<=> x2 - 3x - 4 = 0
<=> ( x + 1 )( x - 4 ) = 0
<=> x = -1 hoặc x = 4