Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=2x\left(x+y\right)=2x^2+2xy\) Với x khác y, x khác -y
\(3x^2+y^2+2x-2y=1\)\(\Leftrightarrow2x^2+2xy+y^2+x^2+1-2xy+2x-2y=2\)
\(\Leftrightarrow P+\left(x-y+1\right)^2=2\)\(\Leftrightarrow P=2-\left(x-y+1\right)^2\le2\)vì \(\left(x-y+1\right)^2\ge0\)với mọi x, y là số thực
Vì P nguyên dương => P=1
Khi đó \(\left(x-y+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-y+1=-1\\x-y+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=-2\\x-y=0\left(loai\right)\end{cases}}\)
vì x khác y
\(A=\left(\frac{2X-1}{x^2-4}+\frac{x+2}{x^2-x-2}\right):\frac{x-2}{x^2+3x+2}ĐK:x\ne\left\{2,-2,-1\right\}\)
a) \(A=\left[\frac{\left(2x-1\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x+1\right)\left(x-2\right)}\right]:\frac{x-2}{\left(x+2\right)\left(x+1\right)}\)
\(A=\left[\frac{\left(2x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}\frac{\left(x+2\right)\left(x+2\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\right].\frac{\left(x+2\right)\left(x+1\right)}{x-2}\)
\(A=\frac{2x^2+x-1+x^2+4x.4}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}.\frac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)}\)
\(A=\frac{3x^2+5x+3}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}.\frac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)}\)
\(A=\frac{3x^2+5x+3}{\left(x-2\right)^2}\)
Ta có :\(3x^2+5x+3\)
\(=3\left(x^2+\frac{5}{3}x+1\right)\)
\(=3\left[x^2+2.\frac{5}{6}x+\frac{25}{36}+\frac{9}{36}\right]\)
\(=3\left[\left(x+\frac{5}{6}\right)^2+\frac{9}{36}\right]>0\)
Mà \(\left(x-2\right)^2>0\)
\(\Rightarrow A>0\left(dpcm\right)\)
\(b,A=11\Leftrightarrow\frac{3x^2+5x+3}{\left(x-2\right)^2}=11\)
\(\Rightarrow3x^2+5x+3=11.\left(x-2\right)^2\)
\(\Rightarrow3x^2+5x+3=11.\left(x^2-4x+4\right)\)
\(\Rightarrow8x^2-49x+41=0\)
\(\Rightarrow8x^2-8x-41x+41=0\)
\(\Rightarrow8x\left(x-1\right)-41\left(x-1\right)=0\)
\(\Rightarrow\left(8x-41\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}8x-41=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{41}{8}\\x=1\end{cases}}}\)(Thỏa mãn)
\(3x^2+y^2+2x-2y=1\Leftrightarrow3x^2+y^2+2\left(x-y\right)=1\)
\(3x^2+y^2+2\left(x-y\right)+2xy-2xy\) thêm 2xy - 2xy
\(2x^2+x^2+y^2+2xy-2xy+2\left(x-y\right)=1\)
\(2x\left(x+y\right)+\left(x^2-2xy+y^2\right)+2\left(x-y\right)=1\)
\(2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)=1\)
\(2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)=2-1\Leftrightarrow2x\left(x+y\right)+\left(x-y\right)^2+2\left(x-y\right)+1=2\)
\(2x\left(x+y\right)+\left(x-y+1\right)^2=2\)
\(2x\left(x+y\right)=2-\left(x-y+1\right)^2\le2\) vì ( x-y+1)^2 >= 0 với mọi xy
rồi đến đây mik éo làm được nữa :))