K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2015

Câu c , đ đợi mình suy nghĩ nhé 
a ) Gọi x là STN cần tìm 
a chia 8 dư 6 
a chia 12 dư 10 
a chia 15 dư 13 
=> ( a + 2 ) chia hết cho 8,12,15 
Vì (a+2) chia hết cho 8,12,15 suy ra a thuộc BC(8,12,15)
8 = 2^3
12 = 2^2 x 3 
15 = 3 x 5 
Vậy BCNN(8,12,15) = 2^3 x 3 x 5 = 120 
=> BC(8,12,15) = { 0 ; 120 ; 240 ; 360 ; 480 ; 600 ; .... } 
=> a thuộc { 118 ; 238 ; 358 ; 478 ; 598 ; ... } ( Này dễ hiểu nhé bạn , vì (a+2) thuộc những số { 0 ; 120 ; ... } nên a bằng những số đó trừ 2 )
Vì a chia hết cho 23 và nhỏ nhất 
=> a thuộc { 598 } 
Vậy STN cần tìm là 598. 
Tương tự giải bài b nhé

19 tháng 11 2015

Ai tick mk lên 30 -> 40 điểm mk tick cho cả tháng 

19 tháng 11 2015

tick bạn nha bạn làm cho

21 tháng 11 2020

1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 .                                                                                                  2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6.                                                                                      Mình ko chắc đâu nha!!!

22 tháng 11 2020

câu 1 sai đề đúng ko bạn

phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23

hại não qá chị ưii

27 tháng 6 2017

nhiều quá đi

22 tháng 9 2015

Ít mà nói nhiều   

22 tháng 9 2015

dfdfdfdfdfd làm đi            

25 tháng 10 2015

678

đoán liều
 

2 tháng 11 2016

a+123 sau đó tự tìm

kết quả: 4793

2 tháng 8 2015

a : 8;10;15;20 dư 5;7;12;17

=> a + 2chia hết cho 8;10;15;20

=> a + 2 là BCNN(8;10;15;20)

8 = 23 ; 10=2.5

12 = 22 . 3 ; 17 = 17

=> BCNN (8;10;12;17) = 23 . 6.17 = 680

=> a + 2 = 680

=> a = 680 - 2

=> a = 678                            

Vậy số cần tìm là 678                 

7 tháng 11 2015

Tôi là giáo viên gia sư Toán cấp 1-2-3. Tôi có học trò lớp 6 hỏi bài toán gần giống bài này. Tôi có lời giải cho bài này như sau:

Gọi a là số tự nhiên cần tìm, thương a chia cho 8, 10, 15, 20 lần lượt là b, c, d, e.

Ta có đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17

Suy ra B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) – 17

Suy ra B(10) – B(8) = 2; B(15) – B(10) = 5; B(20) – B(15) = 5.

B(8) = {0; 8; 16; 30; 40;48; 56; 64; 72; 80; 88; 96; 104; 112; 120…}

B(10) = {0; 10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120; 130; 140; 150; 160;…}

B(15) = {0; 15; 30; 45; 60; 75; 90; 105; 120; 135; 150; 165; …}

B(20) = {0; 20; 40; 60; 80; 100; 120; 140; 160; 180; 200; 220; 240; 260;…}

Để có B(10) – B(8) = 2 ta tìm được cặp 10 – 8; 90 – 88, …

Để có B(15) – B(10) = 5 ta tìm được cặp 15 – 10; 105 – 100, …

Để có B(20) – B(15) = 5 ta tìm được cặp 20 – 15; 80 – 75; 140-135, …

Tuy nhiên để cùng thỏa mãn B(8) – 5 = B(10) – 7 = B(15) – 12 = B(20) – 17 thì ta chọn ở B(8) số 8, ở B(10) số 10, ở B(15) số 15, ở B(20) số 20. Điều này có nghĩa là

8 – 5 = 10 – 7 = 15 – 12 = 20 – 17 = 3.

Con số 3 này gợi ý cho ta cộng thêm vào đẳng thức: a = 8b + 5 = 10c + 7 = 15d + 12 = 20e + 17 hai vế với 3 ta có: a + 3 = 8b + 5 + 3 = 10c + 7 + 3 = 15d + 12 + 3 = 20e + 17 + 3

Suy ra: a + 3 = 8(b + 1) = 10(c + 1) = 15(d + 1) = 20(e + 1)

Suy ra a + 3 chia hết cho 8, 10, 15, 20.

BCNN(8, 10, 15, 20) = 23.3.5 = 120

Suy ra a + 3 thuộc BC(120) = {0; 120; 240; 360; …; 4680; 4800; 4920;…}

Suy ra a thuộc {-3; 117; 237; 357; …; 4677; 4797; 4917;…}

Để a chia hết cho 41 thì chỉ có a = 4797 là thỏa mãn.

Vậy số tự nhiên a nhỏ nhất thỏa mãn điều kiện của bài toán là 4797.