Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+4n=n\left(n+4\right)\)
Để n(n+4) là số nguyên tố thì (n+4;n): (4;1);(1;4);(-1;-4);(-4;-1)
Nếu n+4 = 4; n=1 => n =0 hoặc n=1
Nếu n+4=1; n=4 => n=-3 hoặc n=4
Nếu n+4 = -1;n=-4 => n = 3 hoặc n=-4
Nếu n+4= -4; n= -1 => n=-8; n=-1
\(n^2+4n=n\left(n+4\right)\)
Để \(n^2+4n\) là số nguyên tố thì \(\left[{}\begin{matrix}n=1\\n+4=1\end{matrix}\right.\).
Với \(n=1\): \(n^2+4n=5\) (thỏa mãn).
Với \(n+4=1\Leftrightarrow n=-3\) (không thỏa mãn).
Vì p = ( n - 2 ) . ( n2 + n - 5 ) \(\Rightarrow\)( n - 2 ) và ( n2 + n - 5 ) \(\in\)Ư ( p )
Vì p là số nguyên tố \(\Rightarrow\)n - 2 = 1 hoặc n2 + n - 5 = 1
+) nếu n - 2 = 1 \(\Rightarrow\)n = 3 thì p = ( 3 - 2 ) . ( 33 + 3 - 5 ) = 1 . 7 = 7 ( chọn )
+) nếu n2 + n - 5 = 1 \(\Rightarrow\)n2 + n = 6 \(\Rightarrow\)n . ( n + 1 ) = 6 = 2 . 3 \(\Rightarrow\)n = 2
n = 2 thì p = ( 2 - 2 ) . ( 22 + 2 - 5 ) = 0 ( không phải là số nguyên tố, loại )
Vậy n = 3 thì p = ( n - 2 ) . ( n2 + n - 5 ) là số nguyên tố
Số tự nhiên n = 3
=> P=(3-2)(3^2+3-5)=7
3,7 là 2 số nguyên tố.
Tick mình nha !