K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Với câu c, Thiên Anh nên thêm điều kiện để phần kết luận là: \(0\le x< 2.\)

1 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

13 tháng 4 2021

Em mới lớp 7 nên em chỉ làm những câu em biết thôi nhé:

\(a,\sqrt{x}=15\)

\(\Rightarrow x=15^2\)

\(\Rightarrow x=225\)

\(b,2\sqrt{x}=14\)

\(\sqrt{x}=14:2\)

\(\sqrt{x}=7\)

\(x=7^2\)

\(x=49\)

\(c,\sqrt{x}< \sqrt{2}\)

\(\Rightarrow x< 2\)

Còn ý d em không biết làm ạ ! 

\(a)\sqrt{x}=15\)

\(x\ge0\) nên bình phương hai vế ta được:

\(x=15^2\Leftrightarrow x=225\)

Vậy \(x=225\)

\(b)2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)

Vì  \(x\ge0\) nên bình phương hai vế ta được:

\(x=7^2\Leftrightarrow x=49\)

Vậy \(x=49\)

\(c)\sqrt{x}< \sqrt{2}\)

\(x\ge0\) nên bình phương hai vế ta được: \(x< 2\)

Vậy \(0\le x\le2\)

\(d)\sqrt{2x}< 4\)

Vì \(x\ge0\)nên bình phương hai vế ta được:

\(2x< 16\Leftrightarrow x< 8\)

Vậy \(0\le x< 8\)

24 tháng 8 2016

a) = 225 

b)  49

c) = 1 

d) 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 

k nha

a) \(\sqrt{x}=15\)

=> x = 152

 => x = 225

b) \(2\sqrt{x}=14\)

<=> \(\sqrt{x}=7\)

=> x = 72

=> x = 49

c) \(\sqrt{x}< \sqrt{2}\)

<=> x < 2

mà \(x\ge0\)

=> x= {0;1}

d) \(\sqrt{2x}< 4\)

=> 2x < 16

<=> x < 8

mà \(x\ge0\)

=> x = {0;1;2;3;4;5;6;7}

ok mk nhé!!!!!! 53654645756876969251353253434645655435436464556756252345345634

25 tháng 8 2016

a) 225

b)17:2=7 =>x=47

c)căn 2=1,4142.... mà x ko âm thì dương nên x bằng 1

d)x chắc bằng 1

25 tháng 8 2016

à lúc mình học lớp 6 hay 7 gì đó thì mấy câu này mình giải như vậy thôi

5 tháng 6 2018

a/\(\sqrt{x}=7\)

\(\Leftrightarrow x=49\)

b/\(\Leftrightarrow x< 4\)(do x>0)

\(\Rightarrow x\varepsilon\left\{0;1;2;3\right\}\)

c/\(2x< 16\)

\(\Leftrightarrow x< 8\)

\(\Leftrightarrow x\varepsilon\left\{1;2;3;4;5;6;7\right\}\)

5 tháng 6 2018

a) \(2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)

\(\Leftrightarrow x=7^2\Leftrightarrow x=49\)

b) \(\sqrt{x}< \sqrt{2}\Leftrightarrow x< 2\)

c) \(\sqrt{2x}< 4\)

Vì \(4=\sqrt{16}\text{ nên }\sqrt{2x}< 4\text{ có nghĩa là }\sqrt{2x}< 16\)

\(\Leftrightarrow2x< 16\)

\(\Leftrightarrow x< 8\left(x\ge0\right)\)

18 tháng 6 2023

a)

\(\sqrt{x}=4\Rightarrow x=4^2=16\)

c) \(x\in\varnothing\)

e)  \(\sqrt{x}=6,25\Rightarrow x=\left(6,25\right)^2=39,0625\)

b) \(\sqrt{x}=\sqrt{7}\Rightarrow x=7\)

d) \(\sqrt{x}=0\Rightarrow x=0\)

Cách đánh đề độc lạ ghê:v

a: =>x=16

b: =>x=7

c: =>x thuộc rỗng

d: =>x=0

e: =>x=(25/4)^2=625/16

6 tháng 6 2021

Giúp mình với 

6 tháng 6 2021

a, x = 225

b, x = 49

c, x < 4

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

a. ĐKXĐ: $x\geq -9$

PT $\Leftrightarrow x+9=7^2=49$

$\Leftrightarrow x=40$ (tm)

b. ĐKXĐ: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$

$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$

$\Leftrgihtarrow 3\sqrt{2x+3}=15$

$\Leftrightarrow \sqrt{2x+3}=5$

$\Leftrightarrow 2x+3=25$

$\Leftrightarrow x=11$ (tm)

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

c.

PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{2}{3}\)

d. ĐKXĐ: $x\geq 1$

PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)

\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)

\(\Leftrightarrow -1=9\) (vô lý)

Vậy pt vô nghiệm.

 

NV
13 tháng 12 2020

a.

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{\left(x-1\right)\left(x^3+x^2+x+1\right)}\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x^3+x^2+x+1}-1\right)-\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x^3+x^2+x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x^3+x^2+x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+x=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
13 tháng 12 2020

b.

ĐKXĐ: \(x\ge-1\)

\(x^2-6x+9+x+1-4\sqrt{x+1}+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{x+1}-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

c.

ĐKXĐ: \(-2\le x\le\dfrac{4}{5}\)

\(VT=2x+3\sqrt{4-5x}+1.\sqrt{x+2}\)

\(VT\le2x+\dfrac{1}{2}\left(9+4-5x\right)+\dfrac{1}{2}\left(1+x+2\right)=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=-1\)