Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2x-2\)\(⋮\)\(x-2\)
\(\Leftrightarrow\)\(2\left(x-2\right)+2\)\(⋮\)\(x-2\)
Ta thấy \(2\left(x-2\right)\)\(⋮\)\(x-2\)
nên \(2\)\(⋮\)\(x-2\)
hay \(x-2\)\(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta lập bảng sau:
\(x-2\) \(-2\) \(-1\) \(1\) \(2\)
\(x\) \(0\) \(1\) \(3\) \(4\)
Vậy \(x=\left\{0;1;3;4\right\}\)
a)(x+5) chia hết cho (x+1)
Ta có:
x+5=(x+1)+4
Vì x+1 chia hết cho x+1=>4 chia hết cho x+1
=>x+1 thuộc{1;2;4}
Ta có bảng:
x+1 | 1 | 2 | 4 |
x | 0 | 1 | 3 |
Thử lại: đúng
Vậy x thuộc{0;1;3}
a) Để x + 5 chia hết cho x + 2
hay (x + 2) + 3 chia hết x + 2
vì x+ 2 chia hết cho x+2 nên 3 sẽ chia hết cho x + 2
hay x + 2 thuộc Ư(3)= {-1, 1, 3, -3}
x + 2 | -1 | 1 | 3 | -3 |
x | -3 | -1 | 1 | -5 |
Vậy x= -3, -1, 1, -5
b, \(2x+3⋮x+1\)
\(2\left(x+1\right)+1⋮x+1\)
\(1⋮x+1\)hay \(x+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
x + 1 | 1 | -1 |
x | 0 | -2 |
d, \(3x+13⋮2x+6\)
\(6x+26⋮2x+6\)
\(3\left(2x+6\right)+8⋮2x+6\)
\(8⋮2x+6\)hay \(2x+6\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
2x + 6 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
2x | -5 | -7 | -4 | -8 | -2 | -10 | 2 | -14 |
x | -5/2 | -7/2 | -2 | -4 | -1 | -5 | 1 | -7 |
a. 3x + 5
=> 3x \(⋮\) x
5 \(⋮\) x
=> x \(\in\)(5)
=> x = 1 hoặc x = 5