Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
a, Ta có x-4 \(⋮\)x+1
\(\Rightarrow\left(x+1\right)-5⋮x+1\)
\(\Rightarrow x+1\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)
Ta có bảng giá trị
x+1 | -1 | -5 | 1 | 5 |
x | -2 | -6 | 0 | 4 |
Vậy x={-2;-6;0;4}
b.2x +5=2x-2+7=2(x-1)+7
=> 7 chiahetcho x-1
tu lam
c.4x+1 = 4x+4+(-3)=2(2x+2)-3
tu lAM
d.x^2-2x+3=x^2-2x+1+2=(x+1)^2+2
tu lam
e.x(x+3)+9=>
tu lam
a. 3x + 5
=> 3x \(⋮\) x
5 \(⋮\) x
=> x \(\in\)(5)
=> x = 1 hoặc x = 5
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.
a)(x+5) chia hết cho (x+1)
Ta có:
x+5=(x+1)+4
Vì x+1 chia hết cho x+1=>4 chia hết cho x+1
=>x+1 thuộc{1;2;4}
Ta có bảng:
x+1 | 1 | 2 | 4 |
x | 0 | 1 | 3 |
Thử lại: đúng
Vậy x thuộc{0;1;3}