Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
- vì a chia cho 29 dư 5=>a=29a'+5(a'\(\in\)N)
- vì a chia cho 31 dư 28 =>a=31b'+28
=>a= 29a'+5=31b'+28
=29(a'-b')=2b'+23
Ta thấy: 2b'+23 là số lẻ=> 29(a'-b'0 cũng là số lẻ
theo đề bài a nhỏ nhất=>b' nhỏ nhất
=> a'-b' nhỏ nhất
do đố b'=1
vậy số cần tìm là 121
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
Tìm một số tự nhiên nhỏ nhất, biết rằng khi chia số đó cho 29 thì dư 5 và khi chia cho 31 thì dư 28?
Tham khảo: Câu hỏi của Mai Thiên DI - Toán lớp 6 - Học trực tuyến OLM
Đặt số đó là a, do a chia 29 dư 5 và chia 31 dư 28 \(\Rightarrow\left\{{}\begin{matrix}a=29n+5\\a=31m+28\end{matrix}\right.\) với \(m;n\in N\)
\(\Rightarrow29n+5=31m+28\)
\(\Rightarrow29\left(n-4\right)=31\left(m-3\right)\)
Do 29 và 31 nguyên tố cùng nhau
\(\Rightarrow m-3⋮29\)
Mà a nhỏ nhất \(\Rightarrow\) m nhỏ nhất \(\Rightarrow m=3\)
\(\Rightarrow a=31.3+28=121\)
Giả sử số cần tìm là A đã bớt đi 5.
Khi đó A chia hết cho 29, còn A chia cho 31 dư: 29 - 5 = 24
=> A=31x k+24 (k là số tự nhiên)
Thử chọn: k=0,1,2,3,...ta thấy: khi k=17 thì A=551 chia hết cho 29
Vậy số cần tìm là: A = 551 + 5 = 556
ĐS: 556
Giả sử số cần tìm là a đã bớt đi 5
Khi đó a chia hết cho 29, còn a chia cho 31 dư: 29-5=24
=>a=31xk+24 ( k là số tự nhiên)
Thử chọn từng số ta sẽ thấy k=17 thì a=551 chia hết cho 29
Vậy số cần tìm là a= 551+5=556