Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
a) \(\left(n+6\right)⋮\left(n+1\right)\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\left(4n+9\right)⋮\left(2n+1\right)\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
a/
\(n+3⋮n-1\)
\(\Leftrightarrow4⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(4\right)=\left\{1;-1;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;2;-3;5\right\}\)
Mà n là stn
\(\Leftrightarrow n\in\left\{0;2;5\right\}\)
b/ \(4n+3⋮2n+1\)
\(\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà n là số tự nhiên
=> 2n + 1 là số tự nhiên
=> 2n + 1 = 1
=> 2n = 0
=> n = 0
\(a,n+3⋮n-1\)
\(\Rightarrow n-1+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
~Study well~
#SJ
a) \(n+3⋮n-1\)
\(\Rightarrow n-1+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2\right\}\)
Tìm nốt n
a) \(n+3⋮n-1\)
\(n-1+4⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)
mà \(n\in N\Rightarrow n\in\left\{2;3;5;0\right\}\)
a/
n+3⋮n−1n+3⋮n−1
⇔4⋮n−1⇔4⋮n−1
⇔n−1∈Ư(4)={1;−1;4;−4}
⇔n∈{0;2;−3;5}
Mà n là stn
⇔n∈{0;2;5}
b/ 4n+3⋮2n+1
⇔2(2n+1)+1⋮2n+1
⇔1⋮2n+1
⇔2n+1∈Ư(1)={1;−1}
Mà n là số tự nhiên
=> 2n + 1 là số tự nhiên
=> 2n + 1 = 1
=> 2n = 0
=> n = 0
k cho mik nha
a) \(\Rightarrow\)n + 3 \(⋮\)n + 1
n + 1 \(⋮\)n + 1
\(\Rightarrow\)\(=\frac{n+1+2}{n+1}\)
\(\Rightarrow\)\(=\frac{n+1}{n+1}+\frac{2}{n+1}\)
\(\Rightarrow\)\(2⋮n+1\)
\(\Rightarrow\)\(n+1\notin\)Ư(2)
Ta có bảng sau :
n+1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
a) n+3 chia hết cho n-1
=>n-1+4 chia hết cho n-1
=> 4 chia hết cho n-1
Ta có bảng sau:
n-1 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | 3 | 5 | 0 | -1 | -1 |
vì n là số tự nhiên nên n thuộc tập hợp {2, 3, 5, 0}
b) 4n+3 chia hết cho 2n+1
=> 4n+2+1 chia hết cho 2n+1
=>1 chia hết cho 2n+1
Ta có bảng sau:
2n+1 | 1 | -1 |
n | 0 | -1 |
vì n là số tự nhiên nên n=0
chúc bạn học tốt nha
ủng hộ mk với nha
a / n + 3 = (n - 1 )+ 4 vì ( n - 1 ) chia hết ( n - 1 ) => 4 phải chia hết ( n - 1 )
ƯỚC của 4 là : 4 ; 2 ; 1 hay ( 5 - 1 ) ; ( 3 - 1 ) ; ( 2 - 1 )
nên n nhận các giá trị : 5 ; 3 và 2
b/ 4n + 3 = (4n - 2) + 5 = 2 ( 2n - 1 ) + 5
cũng như phần trên có 2 ( 2n - 1 ) chia hết ( 2n - 1) => 5 phải chia hết cho 2n + 1
các Ưcủa 5 là : 5 và 1 vậy nếu 2n - 1 = 5 => n = (5 + 1) : 2 = 3
2n - 1 = 1 => n = ( 1 + 1 ) : 2 = 1
nên n nhận các giá trị là : 3 và 1
a/ Nếu n + 3 chia hết cho n - 1 thì n - 1 + 4 chia hết cho n - 1
Vì n - 1 + 4 chia hết cho n - 1
n - 1 chia hết cho n - 1
=> 4 chia hết cho n- 1
=> n - 1 thuộc Ư ( 4 )
=> n - 1 thuộc { 1 ; 2 ; 4 }
=> n thuộc { 2 ; 3 ; 5 }