Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
Gọi chữ số hàng đơn vị của số tự nhiên ban đầu là a (10>a>0; a thuộc N*)
Do tổng các chữ số của số ban đầu là 14 nên chữ số hàng đv của số đó là 14-a
Nên số ban đầu có dạng 14-a a =140-9a
Do nếu viết ngược số ban đầu lại thì được 1 số mới có 2 chữ số và lớn hơn số ban đầu 18 đv nên số đó có dạng a 14-a =9a+14
Vì số tự nhiên lúc sau hơn số tự nhiên ban đầu 18 đv nên ta có phương trình:
140-9a+18=9a+14
<=> 144 = 18a
<=> a = 8
=> Chữ số hàng chục của số ban đầu là: 14-8=6.
Vậy số đã cho là 68.
Ta có: (a-3) chia hết cho 5
(a-4) chia hết cho 7
(a-5) chia hết cho 9
=> 2a-6 chia hết cho 5
2a-8 chia hết cho 7
2a-10 chia hết cho 9
=> 2a-1 chia hết cho 5;7;9
Ta có BCNN (5;7;9) = 315. Vậy thì \(2a-1\in B\left(315\right)\)
Mà a là số tự nhiên có bốn chữ số nên \(2a-1\ge2.1000-1=1999\)
\(\Rightarrow2a-1=2205\Rightarrow a=1103\)
Vậy số cần tìm là 1103.