Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a=7k+3\)
\(\Rightarrow a^2=\left(7k+3\right)^2=49k^2+42k+9\)
Vì \(49k^2⋮7;42k⋮7;\)9 chia 7 dư 2 nên
\(49k^2+42k+9\) chia 7 dư 2.
Vậy \(a^2\) chia 7 dư 2(đpcm)
Chúc bạn học tốt!!!
ọi k là một số nguyên, theo đề ta có:
a=3k+1
b=3k+2
ab=(3k+1)(3k+2)=9k^2+9k+2
vì 9k^2 và 9k chia hết cho 3
nên ab chia 3 dư 2
- Vì a chia cho 3 dư 1 nên a = 3m + 1 ( m \(\in\)N )
- Vì b chia cho 3 dư 2 nên b = 3n + 2 ( n\(\in\)N )
Ta có :
a . b = ( 3m + 1 ) ( 3n + 2 )
= 3m . 3n + 3m . 2 + 1 . 3n + 1 . 2
= ( 9 mn + 6m + 3n ) + 2
= 3 ( 3mn + 2m + n ) + 2 ....
Vậy ab chia cho 3 dư 2 .
Ta có:
\(n\div7\left(R=4\right)\Rightarrow R=4\div R7=4\)
\(\Leftrightarrow n^2\div7\left(R=4^2\div R7=2\right)\)
\(\Leftrightarrow n^3\div7\left(R=4^3\div R7=1\right)\)
Vậy khi n2 : 7 có số dư là 2; n3 : 7 có số dư là 1