K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

Chia cho 45 dư 32

2 tháng 3 2016

nhờ trình bày với

18 tháng 1 2021

a) Ta có: \(3^{2021}=3^{2019}\cdot3^2=\left(3^3\right)^{673}\cdot3^2\equiv1.3^2=9\left(mod13\right)\)

Vậy số dư của \(3^{2021}\) cho 13 là 9.

b) \(2008^{2008}=\left(2008^2\right)^{1004}\equiv1^{1004}=1\) (mod 7)

Vậy số dư của $2008^{2008}$ cho $7$ là $1.$

P/s: Rất lâu rồi mình không giải toán đồng dư nên không chắc bạn nhé.

9 tháng 8 2021

A : 7 = x ( dư 3 )

A : 9 = y ( dư 3 )

y + 2 = x 

vậy ta có thể nói 

y . 9 + 3 = ( y + 2 ) . 7 + 3 

y . 9 + 3 = y . 7 + 14 + 3 

y . 9 + 3 = y . 7 + 17 

y . 9 - y . 7  = 17 - 3 

        2y        = 14 

          y = 7 

a = 7 x 9 + 3 = 66 

Hok tốt