K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2021

a) Ta có: \(3^{2021}=3^{2019}\cdot3^2=\left(3^3\right)^{673}\cdot3^2\equiv1.3^2=9\left(mod13\right)\)

Vậy số dư của \(3^{2021}\) cho 13 là 9.

b) \(2008^{2008}=\left(2008^2\right)^{1004}\equiv1^{1004}=1\) (mod 7)

Vậy số dư của $2008^{2008}$ cho $7$ là $1.$

P/s: Rất lâu rồi mình không giải toán đồng dư nên không chắc bạn nhé.

14 tháng 8 2019

mik tính A trước nhé

\(A=1-2+2^2-...-2^{2007}+2^{2008}\)

\(2.A=2-2^2+2^3-...-2^{2008}+2^{2009}\)

\(2.A-A=\left(2-2^2+2^3-..-2^{2008}+2^{2009}\right)\)\(-\left(1-2+2^2-...-2^{2007}+2^{2008}\right)\)

\(A=1-2^{2009}\)

22 tháng 2 2019

baif4 :

 a, chữ số tận cùng của 2^999 là 88

b, là 76

22 tháng 2 2019

1, Ta có 2009^2008 = (2009^2)^1004 = (.....1)^1004 = .....1

Vậy chũa số tận cùng của 2009^2008 là chữ số 1

4 tháng 8 2020

Ta có : 2019.2021 = (2020 - 1).(2020 + 1)

                              =  2020.2020 + 2020 - 2020 - 1.1

                              = 2020.2020 - 1 = 2020.2019 + 2020 - 1 

                              = 2020.2019 + 2019

Vì 2020.2019 \(⋮\)2020

mà 2019 : 2020 = 0 dư 2019

=> 2020.2019 + 2019 : 2020 dư 2019

hay 2019.2021 : 2020 dư 2019

C1:Ta có:\(2019\equiv-1\left(mod2020\right)\)

          \(2021\equiv1\left(mod2020\right)\)

\(\Rightarrow2019.2021\equiv\left(-1\right).1\left(mod2020\right)\)

\(\Rightarrow2019.2021\equiv-1\left(mod2020\right)\)hay 2019.2021 chia 2020 dư 2019

C2:Ta có:\(2019.2021=2019.\left(2020+1\right)=2019.2020+2019\)

Vì 2019.2020 chia hết cho 2020 và 2019 chia 2020 dư 2019 nên 2019.2020+2019 chia 2020 dư 2019 hay 2019.2021 chia 2020 dư 2019

4 tháng 7 2015

lấy máy tính tự chia nhá

2 tháng 3 2016

Chia cho 45 dư 32

2 tháng 3 2016

nhờ trình bày với