K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

\(A=2+2^2+2^3+...+2^{100}\)

\(A=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(A=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(A=2+2^2\cdot7+...+2^{98}\cdot7\)

\(A=2+7\cdot\left(2^2+...+2^{98}\right)\)

Dễ thấy \(7\cdot\left(2^2+...+2^{98}\right)⋮7\)

\(\Rightarrow\) A chia 7 dư 2

30 tháng 11 2018

A=2+(22+23+24)+...+(298+299+2100)A=2+(22+23+24)+...+(298+299+2100)

A=2+22(1+2+22)+...+298(1+2+22)A=2+22(1+2+22)+...+298(1+2+22)

A=2+22⋅7+...+298⋅7A=2+22⋅7+...+298⋅7

A=2+7⋅(22+...+298)A=2+7⋅(22+...+298)

Ta thấy 7⋅(22+...+298)⋮77⋅(22+...+298)⋮7

⇒⇒ A chia 7 dư 2

16 tháng 9 2019

ta nhận thấy 2^1+2^2+2^3+2^4 chia hết cho 7.Vậy cứ 4 số liên tiếp cũng chia hết cho 7.

=>Số số hạng của mũ là:

100-1:1=100

mà 100 chia hết cho 4 

=>[2^1+2^2+...2^98+2^99+2^100]:7 có số dư là 0

16 tháng 12 2021
Hello. ..........

\(A=1+2^2+2^3+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{100}+2^{101}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(\Rightarrow A=2^{101}-1\)

\(\Rightarrow A+1=2^{101}-1+1\)

\(\Rightarrow a+1=2^{101}\)

\(\Rightarrow2n+1=101\)

\(\Rightarrow2n=101-1\)

\(\Rightarrow2n=100\)

\(\Rightarrow n=100\div2\)

\(\Rightarrow n=50\)

22 tháng 12 2021

tôi làm luôn nhé ko ghi đề bài

A=2+(2^2+2^3+2^4)+....+(2^99+2^100+2^101)

A=2+2^2.(1+2+2^2)+...+2^99.(1+2+2^2)

A=2+2^2.7+...+2^99.7

A=2+(2^2+...+2^99).7 ko chia hết cho 7 

Vậy A :7 thì dư 2

3 tháng 1 2017

A=-1+(-1)+...+(-1) {có 50 số hạng}

=-1.50=-50

3 tháng 1 2017

A=1-2+3-4+...+99-100       SSH=(100-1):1+1=100 Sh

=>A=(1-2)+(3-4)+....+(99-100)

vì chia thành cặp suy ra 100:2 =50 cặp

A=(-1)+(-1)+...(-1)

A=(-1).50

A=-50

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)