K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

tôi làm luôn nhé ko ghi đề bài

A=2+(2^2+2^3+2^4)+....+(2^99+2^100+2^101)

A=2+2^2.(1+2+2^2)+...+2^99.(1+2+2^2)

A=2+2^2.7+...+2^99.7

A=2+(2^2+...+2^99).7 ko chia hết cho 7 

Vậy A :7 thì dư 2

16 tháng 9 2019

ta nhận thấy 2^1+2^2+2^3+2^4 chia hết cho 7.Vậy cứ 4 số liên tiếp cũng chia hết cho 7.

=>Số số hạng của mũ là:

100-1:1=100

mà 100 chia hết cho 4 

=>[2^1+2^2+...2^98+2^99+2^100]:7 có số dư là 0

16 tháng 12 2021
Hello. ..........
NM
9 tháng 1 2021

\(A=3+3^2+3^3+...+3^{100}+3^{101} \)

\(\Leftrightarrow A=3+\left(3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9\right)+...+\left(3^{98}+3^{99}+3^{100}+3^{101}\right)\)

\(\Leftrightarrow A=3+3\left(3+3^2+3^3+3^4\right)+3^2\left(3+3^2+3^3+3^4\right)+...+3^{97}\left(3+3^2+3^3+3^4\right)\)

mà \(3+3^2+3^3+3^4=120 ⋮ 120\) vậy A chia 120 dư 3

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

4 tháng 1 2022

dư 0 nhé

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51