Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ac/b7=2/3 suy ra ac= 2xb7/3, mà 2 không chia hết cho 3 nên b7 phải chia hết cho 3. Vậy b7 có thể là 27,57, 87. Nên b có thể là 2 hoặc 5 hoặc 8.
Nếu b=2 thì ac=18 tức a=1, c=8, ta có số 128.
Nếu b=5 thì ac=38 tức a=3, c=8, ta có số 358.
Nếu b=8 thì ac=58 tức a=5, c=8, ta có số 588.
Vậy ta có ba số là: 128, 358 và 588.
Được 1GP ko vậy
gọi số thêm vào là a ta có
45+a/121+a=3/7 suy ra (45+a)*7=(121+a)*3
hay 315+7a=363 + 3a
7a-3a =363-315(đổi vế)
4a = 48
a= 48/4=12
Để chứng minh \(\frac{12n+1}{30n+1}\) là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d thuộc n)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> thuộc Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy \(\frac{12n+1}{30n+1}\) là phân số tối giản
c1 chắc có lộn đề r
c2:Gọi 2 số cần tìm lần lượt là a,b
Ta có: 9/11a=6/7b
a+b=258 nên a=258-b
=>9/11*(258-b)=6/7b
2322/11-9/11b=6/7b
6/7b+9/11b=2322/11
66/77+63/77b=2322/11
129/77b=2322/11
b=2322/11:129/77=126
nên a=258-126=132
Vậy 2 số cần tìm lần lượt là 132;126
273
Bạn Phạm Nguyễn Tất Đạt viết cả lời giải ra cho mình nhé .