Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(\frac{a}{a-b}=8\cdot\frac{a}{b}\)
\(\Rightarrow\frac{a-b}{a}=\frac{b}{8\cdot a}\)
\(\Rightarrow1-\frac{b}{a}=\frac{b}{a}\cdot\frac{1}{8}\)
\(\Rightarrow1=\frac{b}{a}\cdot\frac{1}{8}+\frac{b}{a}\)
\(\Rightarrow\frac{b}{a}\cdot\frac{9}{8}=1\)
\(\Rightarrow1:\frac{a}{b}=1:\frac{9}{8}\)
\(\Rightarrow\frac{a}{b}=\frac{9}{8}\)
Thử lại: \(\frac{9}{8}\cdot8=9=\frac{9}{9-8}\) ( đúng với đề bài )
Vậy phân số a/b cần tìm là 9/8
a, Giả sử \(\frac{a+b}{b}\)không tối giản thì tử và mẫu có ước chung \(d\ne\pm1\), suy ra \((a+b)⋮d;b⋮d(1)\)
\((a+b)⋮d\)nên \(\left[(a+b)-b\right]⋮d\), do đó \(a⋮d(2)\)
Từ 1 và 2 suy ra \(\frac{a}{b}\)không tối giản . Vậy : \(\frac{a+b}{b}\)là phân số tối giản
b, Giải thích tương tự như câu a nhé :v
a) Giả sử \(\frac{a+b}{b}\)không tối giản thì tủ và mẫu có ước chung d \(\ne\)+1 , -1 suy ra (a + b ) \(⋮\)d,b \(⋮\)d (1) Nên (a+b) - b \(⋮\)d , do đó a \(⋮\)d (2)
Từ 1 và 2 ta có \(\frac{a}{b}\)không tối giản ( điều này trái với đầu bài)
Vậy \(\frac{a+b}{b}\)là phân số tối giản
b) Giải thích tương tự như câu a
Ta có:\(\frac{a}{b-a}=8.\frac{a}{b}\)
\(\Rightarrow\frac{a}{b-a}=\frac{8.a}{b}\)
hay\(\frac{a.b}{\left(b-a\right).b}=\frac{\left(b-a\right).8.a}{\left(b-a\right).b}\)
\(\Rightarrow a.b=\left(b-a\right).8.a\)
\(\Rightarrow a.b=8.a.b-8.a^2\)
\(\Rightarrow a.b\div a=\left(8.a.b-8.a^2\right)\div a\)
\(\Rightarrow b=8.b-8.a\)
\(\Rightarrow8.b-b=8.a\)
\(\Rightarrow7.b=8.a\)
\(\Rightarrow\hept{\begin{cases}a=7\\b=8\end{cases}}\)
Vậy\(\hept{\begin{cases}a=7\\b=8\end{cases}}\)
Từ a/b-a = a/b . 8 => ab = 8a(b - a )
ab = 8ab - 8a^2
8a^2 = 7ab
8a = 7b hay a/b = 7/8
Gọi D là UCLN (a, b). Ta kí hiệu là (a, b). Áp dụng tính chất: P/s tối giản là p/s có UCLN = 1.
Ta có:
(a, b) = D = 1
\(\Rightarrow\frac{a}{b}=1\)
\(\Rightarrow\frac{2a+b}{a\left(a+b\right)}=\frac{2a+b}{a}+\frac{2a+b}{a+b}\). Mà (a, b) = 1
\(\Rightarrow\frac{2a+b}{a}+\frac{2a+b}{a+b}=\frac{2a+b}{D}+\frac{2a+b}{D+b}=\frac{2a+b}{1}+\frac{2a+b}{1+b}=\frac{2a+b}{1\left(1+b\right)}=1^{\left(đpcm\right)}\)