Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(1+x+x^2+x^3+x^4\)
=>4A=\(4x^4+4x^3+4x^2+4x+4\)
4A=\((4x^4+4x^3+x^2)+(x^2+4x+4)+2x^2\)\(=(2x^2+x)^2+(x+2)^2+2x^2>(2x^2+x)^2\) (1)
Lại có:
4A=\((4x^4+x^2+2^2+4x^3+4x+8x^2)-5x^2\)
4A=\((2x^2+x+2)^2-5x^2\)\(<(2x^2+x+2)^2\)(2)
Vì A là số chính phương
=>4A cũng là số chính phương
Từ (1) và (2)
=>4A=\((2x^2+x+1)^2\)
Mà 4A=4\((1+x+x^2+x^3+x^4)\)
=>\((2x^2+x+1)^2=4(1+x+x^2+x^3+x^4)\)
Từ đây giải phương trình ra thôi
2*(2xy + x + y) = 2*83
=> 4xy + 2x + 2y = 166
=> 2x(2y + 1) + 2y +1 = 167 (cộng 2 vế với 1)
=> (2x + 1)(2y + 1) = 167
=> (2x + 1), (2y + 1) thuộc Ư(167) (vì x, y thuộc Z)
=> (2x + 1), (2y + 1) thuộc (1, -1, 167, -167)
kẻ bảng ra
\(x^3-y^3-2y^2-3y-1=0\)
\(<=>x^3=y^3+2y^2+3y+1\)≤\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)
Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)
Từ (1) và (2)
\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)
\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)
Xong giải ra thôi
Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời
Thay x=1 vào phương trình ta có:
\(\left(1-3a+1\right)\left(3+2a-5\right)=0\)
\(\Leftrightarrow\left(-3a+2\right)\left(2a-2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}-3a+2=0\\2a-2=0\end{matrix}\right.\left[\begin{matrix}a=\dfrac{2}{3}\\a=1\end{matrix}\right.\)
TH1: \(a=\dfrac{2}{3}\)
\(\Rightarrow\left(x-3.\dfrac{2}{3}+1\right)\left(3x+2.\dfrac{2}{3}-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-\dfrac{11}{3}\right)=0\Leftrightarrow\left[\begin{matrix}x-1=0\\3x-\dfrac{11}{3}=0\end{matrix}\right.\left[\begin{matrix}x=1\\x=\dfrac{11}{9}\end{matrix}\right.\)
TH2:a=1
\(\Leftrightarrow\left(x-3+1\right)\left(3x+2-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-3\right)=0\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)
cái này phải vận dụng cái giả thiết cho là nghiệm nguyên dương
a) Thay \(x=1\)vào pt ta được :
\(1+k-4-4=0\)
\(\Leftrightarrow k-7=0\)
\(\Leftrightarrow k=7\)
b) Thay \(k=7\)vào pt ta được :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
* \(x-1=0\Leftrightarrow x=1\)
* \(x^2+8x+4=0\)
Ta có : \(\Delta=8^2-4\times4=48>0\)
\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)
Vậy ...
Ta có: \(\left(x+3\right)\left(x-3\right)=x^2-9=16\)
\(x^2=25\)
\(x=5;x=-5\)
(1-x)(x^2+1)=0 chắc chắn sẽ không nhận x=-1 hoặc x=5 làm nghiệm rồi
(2x^2+7)(8-mx)=0
=>8-mx=0
Nếu 8-mx=0 nhận x=-1 làm nghiệm thì m+8=0
=>m=-8
Nếu 8-mx=0 nhận x=5 làm nghiệm thì 8-5m=0
=>m=8/5
sao tôi toàn gặp 2015 thế nhỉ
Cái này bộ ba pytago nên bạn chỉ cần cm x=2 là đc