Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
Lời giải:
$M(x)=(6+4x)(-x+2)=0$
\(\Leftrightarrow \left[\begin{matrix} 6+4x=0\\ -x+2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=2\end{matrix}\right.\)
Vậy nghiệm của đa thức $M(x)$ là $x=\frac{-3}{2}$ và $x=2$
Ta có :
\(f\left(x\right)-g\left(x\right)=4x+\frac{16}{3}\)
\(\Rightarrow4x+\frac{16}{3}=0\)
\(\Rightarrow4x=0-\frac{16}{3}\)
\(\Rightarrow4x=\frac{-16}{3}\)
\(\Rightarrow x=\frac{-16}{3}\div4\)
\(\Rightarrow x=\frac{-4}{3}\)
Vậy nghiệm của đa thức f (x) - g(x) là \(\frac{-4}{3}\)
\(P\left(x\right)=2x^3+4x^2-5x-1=0\)
<=> \(2x^3-2x^2+6x^2-6x+x-1=0\)
<=> \(2x^2\left(x-1\right)+6x\left(x-1\right)+x-1=0\)
<=> \(\left(x-1\right)\left(2x^2+6x+1\right)=0\)
<=> \(x-1=0\) (do 2x2 + 6x + 1 khác 0)
<=> \(x=1\)
Vậy....
\(P\left(x\right)=2x^3+4x^2-5x-1\)
\(P\left(x\right)=2x^3-2x^2+6x^2-6x+x-1\)
\(P\left(x\right)=2x^2\left(x-1\right)-6x\left(x-1\right)+\left(x-1\right)\)
\(P\left(x\right)=\left(x-1\right)\left(2x^2-6x+1\right)\)
Để P(x) có nghiệm \(\Rightarrow x-1=0\Leftrightarrow x=1\)
Vậy x = 1 là 1 nghiệm của P(x)
Dễ mà, f(1)=a*1+b=0 => a+b=0
f(0)=5 mà f(0)=a*0+b=5 nên b=5 => a=-5
4x2 + x - 3 = 0
<=> 4x2 + 4x - 3x - 3 = 0
<=> 4(x + 1) - 3(x + 1) = 0
<=> (x + 1)(4x - 3) = 0
<=> \(\orbr{\begin{cases}x+1=0\\4x-3=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-1\\x=\frac{3}{4}\end{cases}}\)
Vậy: x = -1; x = 3/4 là nghiệm của đa thức 4x2 + x - 3
\(4x^2+x-3\)
\(4xx+x-3\)
\(x\left(4x+1\right)-3\)