K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

Ta có :

\(f\left(x\right)-g\left(x\right)=4x+\frac{16}{3}\)

\(\Rightarrow4x+\frac{16}{3}=0\)

\(\Rightarrow4x=0-\frac{16}{3}\)

\(\Rightarrow4x=\frac{-16}{3}\)

\(\Rightarrow x=\frac{-16}{3}\div4\)

\(\Rightarrow x=\frac{-4}{3}\)

Vậy nghiệm của đa thức f (x) - g(x) là \(\frac{-4}{3}\)

13 tháng 4 2022

Bài 1.

a.\(\left(x-8\right)\left(x^3+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)

\(\Leftrightarrow4x-3-x-5=30-3x\)

\(\Leftrightarrow4x-x+3x=30+5+3\)

\(\Leftrightarrow6x=38\)

\(\Leftrightarrow x=\dfrac{19}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 4 2022

Bài 1:

a. $(x-8)(x^3+8)=0$

$\Rightarrow x-8=0$ hoặc $x^3+8=0$

$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$

$\Rightarrow x=8$ hoặc $x=-2$

b.

$(4x-3)-(x+5)=3(10-x)$

$4x-3-x-5=30-3x$

$3x-8=30-3x$

$6x=38$
$x=\frac{19}{3}$

11 tháng 7 2015

a) Thay đa thức này bằng 0, ta được: 

f(x) = x^3 - x^2 + x - 1 = 0

=> f(x) = x . x2 - x . x + x - 1 = 0

=> f(x) = x. (x2 - x + x) = 0 + 1 = 1

=> f(x) = x . x2 = 1

=> x = 1   và    x2 = 1

=> x = 1

Vậy nghiệm của đa thức là x = 1

12 tháng 7 2015

a)g(x)=0=>11x3+5x2+4x+10=0

=>(10x3+10)+(x3+x2)+(4x2+4x)=0

=>10(x3+1)+x2(x+1)+4x(x+1)=0

=>10(x+1)(x2−x+1)+x2(x+1)+4x(x+1)=0

=>(x+1)[(10(x2−x+1)+x2+4x]=0

=>(x+1)(11x2−6x+10)=0

=>(x+1)[(9x2−2.3x+1)+2x2+9]=0

=>(x+1)[(3x−1)2+2x2+9]=0

=>x+1=0

 

=>x=-1

Vậy x=-1

1 tháng 5 2015

cho da thuc = 0 ma tinh                

1 tháng 5 2015

f(x) = 0 => x3 - 2x2 - x + 2 = 0

=> x2. (x - 2) - (x - 2) = 0

=> (x2 - 1).(x - 2) = 0 => x2 - 1 = 0 hoặc x - 2 = 0

+) x2 - 1 = 0 => x = 1 hoặc x = -1

+) x - 2 = 0 => x = 2

Vậy đa thức có 3 nghiệm là: -1;1;2

22 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{1}{x^2-4x+7}\)

\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)

\(A=\frac{1}{\left(x-2\right)^2+3}\)

Lại có : 

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)

\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)

Chúc bạn học tốt ~ 

22 tháng 4 2018

\(b)\) Ta có : 

\(f\left(x\right)=x^2-4x+7\)

\(f\left(x\right)=\left(x^2-4x+4\right)+3\)

\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)

Vậy đa thức \(f\left(x\right)\) vô nghiệm 

Chúc bạn học tốt ~ 

AH
Akai Haruma
Giáo viên
22 tháng 4 2021

Lời giải:

$M(x)=(6+4x)(-x+2)=0$

\(\Leftrightarrow \left[\begin{matrix} 6+4x=0\\ -x+2=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=2\end{matrix}\right.\)

Vậy nghiệm của đa thức $M(x)$ là $x=\frac{-3}{2}$ và $x=2$