Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước ( n+3 ; 2n+5)=d (d ϵ N*)
⇒ n+3 ⋮ d và 2n+5 ⋮ d
⇒2n+6 ⋮ d và 2n+5 ⋮ d
⇒ (2n+6) - (2n+5) ⋮ d
⇒ 1 ⋮ d
Mà d ϵ N*
⇒ d = 1
Ta có: Ư(1)={1}{1}
Vậy ƯC (n+3;2n+5) = {1}
Gọi d là ƯC(2n - 1; 9n + 4)
\(\Rightarrow\hept{\begin{cases}2n-1⋮d\\9n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}9\left(2n-1\right)⋮d\\2\left(9n+4\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}18n-9⋮d\\18n+8⋮d\end{cases}}}}\)
=> ( 18n - 9 ) - ( 18n + 8 ) chia hết cho d
=> 18n - 9 - 18 - 8 chia hết cho d
=> ( 18n - 18n ) - ( 9 - 8 ) chia hết cho d
=> 0 - 1 chia hết cho d
=> -1 chia hết cho d
=> d = 1 hoặc d = -1
=> ƯCLN(2n - 1; 9n + 4) = 1
Gọi UCLN của ( 2n-1;9n+4) là A
Ta có: \(2n-1⋮A\)\(\Rightarrow\)\(9\left(2n-1\right)⋮A\)\(\Leftrightarrow\)\(18n-9⋮A\)(1)
\(9n+4⋮A\)\(\Rightarrow2\left(9n+4\right)⋮A\Leftrightarrow18n+8⋮A\)(2)
\(\left(1\right)\left(2\right)\Rightarrow\left(18n+8\right)-\left(18n-9\right)⋮A\)
\(\Leftrightarrow17⋮A\)
\(\Rightarrowđpcm\)
2n + 3 ⋮ n + 5
=> 2n + 10 - 7 ⋮ n + 5
=> 2(n + 5) - 7 ⋮ n + 5
2(n + 5) ⋮ n + 5
=> 7 ⋮ n + 5
=> n + 5 ∈ Ư(7) = {-1; 1; -7; 7}
=> n thuộc {-6; -4; -12; 2}
vậy_
b tương tự