Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3,
đặt \(\hept{\begin{cases}\sqrt{x^2+y^2}=a\\\sqrt{y^2+z^2}=b\\\sqrt{z^2+x^2}=c\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2+y^2=a^2\\y^2+z^2=b^2\\z^2+x^2=c^2\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=\frac{a^2+c^2-b^2}{2}\\y^2=\frac{b^2+a^2-c^2}{2}\\z^2=\frac{b^2+c^2-a^2}{2}\end{cases}}}\)
\(\Leftrightarrow M=\frac{a^2+c^2-b^2}{2\left(y+z\right)}+\frac{b^2+a^2-c^2}{2\left(z+x\right)}+\frac{c^2+b^2-a^2}{2\left(x+y\right)}\)
áp dụng bunhia ta có:
\(\hept{\begin{cases}\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\\\left(y^2+z^2\right)\left(1+1\right)\ge\left(y+z\right)^2\\\left(z^2+x^2\right)\left(1+1\right)\ge\left(z+x\right)^2\end{cases}\Leftrightarrow\hept{\begin{cases}2a^2\ge\left(x+y\right)^2\\2b^2\ge\left(y+z\right)^2\\2c^2\ge\left(z+x\right)^2\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{2}a\ge x+y\\\sqrt{2}b\ge y+z\\\sqrt{2}c\ge z+x\end{cases}}}\)
\(\Rightarrow M\ge\frac{a^2+c^2-b^2}{\sqrt{2}b}+\frac{a^2+b^2-c^2}{\sqrt{2}c}+\frac{c^2+b^2-a^2}{\sqrt{2}a}=\frac{1}{\sqrt{2}}\left(\frac{a^2}{b}+\frac{c^2}{b}-b+\frac{a^2}{c}+\frac{b^2}{c}-c+\frac{c^2}{a}+\frac{b^2}{a}-a\right)\)\(\ge\frac{1}{\sqrt{2}}\left(\frac{4\left(a+b+c\right)^2}{2\left(a+b+c\right)}-a-b-c\right)=\frac{1}{\sqrt{2}}\left(a+b+c\right)=\frac{6}{\sqrt{2}}\)
\(A=\sqrt{\left(x-2\right)\left(6-x\right)}\ge0\) (căn bậc 2 luôn không âm)
\(\Rightarrow A_{min}=0\) khi \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Theo BĐT Cauchy:
\(A=\sqrt{\left(x-2\right)\left(6-x\right)}\le\dfrac{x-2+6-x}{2}=2\)
\(\Rightarrow A_{max}=2\) khi \(x-2=6-x\Leftrightarrow x=4\)
Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma
giúp e vs ạ! Cần gấp!
thanks nhiều!
Cho \(x^2+y^2=1\).Tìm min max \(\sqrt{3}xy+y^2\)
Cho \(a^2+b^2\le2\left(a+b\right)\) Tìm min max 2a+b
E2 = 8+căn(2-x)(x+6)
+) vì căn (2-x)(x+6) >=
=> E2 >= 8
với đk -6<=x<=2 thì E luôn dương( câu này viết gọn thành E>= 0)
=> E>= căn 8=2 căn 2
=> Min E = 2 căn 2 khi x=-6 hoặc x=2
+)E2 = 8+căn( -x2 -4x+12)
E2=8 +căn(-x2-4x-4 + 16) = 8+căn(-(x+2)2 + 16) <= 8 + căn 16 = 8+4 = 12 ( vì -(x+2)2 <= 0 V x)
=>E<= căn12 = 2 căn 3
=> Max E = 2 căn 3 khi x=-2
học tốt
a sorry
phần max nha
E2 <= 8 + 2 căn 16 = 8+8=16
E>0 =>0< E<=4
=> MaxE = 4 khi x=-2
xin lỗi nhiều
học tốt