Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(x^2-6x+15=\left(x^2-6x+9\right)+6=\left(x-3\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
b) \(3x^2-15x+4=3\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{59}{4}=3\left(x-\dfrac{5}{2}\right)^2-\dfrac{59}{4}\ge-\dfrac{59}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Bài 2:
a) \(\Rightarrow\left(x-5\right)\left(x+5\right)+2\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
c) \(\Rightarrow x^2\left(x-2\right)+7\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+7\right)=0\)
\(\Rightarrow x=2\left(do.x^2+7\ge7>0\right)\)
a) C <=> 3(x2+5x-7)
<=> 3[(x2 + 2.5/2.x +25/4)-25/4 -7]
<=> 3(x+5/2)2-159/4 >= -159/4
Vậy Min C = -159/4 <=> x + 5/2 =0 <=> x=-5/2
b) x2 +2x +5 = x2 +2x +1+4=(x+1)2+4>=4
ta có: D = 5/x2+2x+5 = 5/(x+1)2+4 <= 5/4
Vậy Max D = 5/4 <=> x= -1
Từ \(10x^2+5x-3=0\) suy ra \(x^2+5x-2=-9x^2+1\) thay vào P được
\(P=\frac{3\left(x^2+5x-2\right)}{9x^2-1}=\frac{3\left(-9x^2+1\right)}{9x^2-1}=\frac{-3\left(9x^2-1\right)}{9x^2-1}=-3\)
\(A=\frac{x}{3}+\frac{16}{3x}+\frac{15}{3}\ge2\sqrt{\frac{16x}{9x}}+\frac{15}{3}=\frac{23}{3}\)
\(A_{min}=\frac{23}{3}\) khi \(\frac{x}{3}=\frac{16}{3x}\Leftrightarrow x=4\)
Nếu ko có thêm điều kiện gì cho x thì biểu thức này ko tồn tại GTNN
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
\(\frac{x^2+15x+16}{3x}=\frac{x^2-8x+16+23x}{3x}=\frac{\left(x-4\right)^2}{3x}+\frac{23}{3}\ge\frac{23}{3}\), với mọi x >0
Dấu = xảy ra <=> x =4
Cách khác : \(\frac{x^2+15x+16}{3x}=\frac{x}{3}+\frac{15}{3}+\frac{16}{3x}\)
Áp dụng bđt Cauchy với x/3 và 16/3x ta có :\(\frac{x}{3}+\frac{16}{3x}\ge2\sqrt{\frac{x}{3}.\frac{16}{3x}}=\frac{8}{3}\Rightarrow\frac{x}{3}+\frac{16}{3x}+\frac{15}{3}\ge\frac{23}{3}\)
Dấu = xảy ra <=> x/3 = 16/3x <=> 3x2 = 48 <=> x =4