Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x+2\right|+\left|y+5\right|=0\)
\(\Rightarrow\begin{cases}\left|x+2\right|=0\\\left|y+5\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x+2=0\\y+5=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-2\\y=-5\end{cases}\)
b) \(\left|\left|y\right|+\left|x+2\right|\right|+\left|x\right|=0\)
\(\Rightarrow\begin{cases}\left|\left|y\right|+\left|x+2\right|\right|=0\\\left|x\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}\left|y\right|+\left|x+2\right|=0\\x=0\end{cases}\)
Thay x = 0 vào biểu thức \(\left|y\right|+\left|x+2\right|=0\), ta đc:
\(\left|y\right|+\left|0+2\right|=0\Rightarrow\left|y\right|+2=0\Rightarrow\left|y\right|=-2\Rightarrow y=\phi\)
Vậy \(x=0;y=\phi\)
a) Ta có : | x | \( \geq\) 0 ; | x + 1 | \( \geq\) 0 ; | x + 2 | \( \geq\) 0 ; | x + 3 | \( \geq\) 0
\(\implies\) | x | + | x + 1 | + | x + 2 | + | x + 3 | \( \geq\) 0
Mà | x | + | x + 1 | + | x + 2 | + | x + 3 | = 6x
\(\implies\) 6x \( \geq\) 0
\(\implies\) x \( \geq\) 0 ( đpcm )
b) Vì x \( \geq\) 0
\(\implies\) | x | + | x + 1 | + | x + 2 | + | x + 3 | = x + x +1 + x + 2 + x + 3 = 4x + 6
\(\implies\) 4x + 6 = 6x
\(\implies\) 6 = 2x
\(\implies\) x = 3
A = |x| + 7
|x| >/ 0
=> A >/ 7
Vậy GTNN của A = 7 kh |x| = 0 <=> x= 0