Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\left(1\right)\\2x^2+xy+4y^2=5\left(2\right)\end{matrix}\right.\)\(với\)\(y=0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}x^2=-4\\2x^2=5\end{matrix}\right.\)\(\left(loại\right)\)
\(y\ne0\) \(đặt:x=t.y\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}t^2y^2+2ty^2-3y^2=-4\left(3\right)\\2t^2y^2+ty^2+4y^2=5\left(4\right)\end{matrix}\right.\)
\(\Leftrightarrow5t^2y^2+10ty^2-15y^2=-8t^2y^2-4ty^2-16y^2\)
\(\Leftrightarrow13t^2y^2+14ty^2+y^2=0\)
\(\Leftrightarrow13t^2+14t+1=0\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{13}\\t=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{13}y\left(5\right)\\x=-y\left(6\right)\end{matrix}\right.\)
\(thay\left(5\right)và\left(6\right)\) \(lên\left(1\right)hoặc\left(2\right)\Rightarrow\left(x;y\right)=\left\{\left(1;-1\right);\left(-1;1\right);\left(-\dfrac{1}{\sqrt{133}};\dfrac{13}{\sqrt{133}}\right)\right\}\)
\(pt:x^4-4x^3+x^2+6x+m+2=0\)
\(\Leftrightarrow x^4-4x^3+4x^2-3x^2+6x+m+2=0\)
\(\Leftrightarrow\left(x^2-2x\right)^2-3\left(x^2-2x\right)+m+2=0\left(1\right)\)
\(đặt:x^2-2x=t\ge-1\)
\(\Rightarrow\left(1\right)\Leftrightarrow t^2-3t=-m-2\)
\(xét:f\left(t\right)=t^2-3t\) \(trên[-1;+\text{∞})\) \(và:y=-m-2\)
\(\Rightarrow f\left(-1\right)=4\)
\(f\left(-\dfrac{b}{2a}\right)=-\dfrac{9}{4}\)
\(\left(1\right)\) \(có\) \(3\) \(ngo\) \(pb\Leftrightarrow-m-2=4\Leftrightarrow m=-6\)
a: \(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot5\left(m-1\right)\)
\(=16-40\left(m-1\right)\)
\(=16-40m+40\)
=-40m+56
Để phương trình có hai nghiệm phân biệt nhỏ hơn 3 thì
\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}< 6\end{matrix}\right.\Leftrightarrow-40m>-56\)
hay m<7/5
b: Để phương trình có hai nghiệm phân biệt lớn hơn 3 thì
\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}>6\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
\(x^2+4x-m+3=0\) . Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn \(\left|x_1-x_2\right|\le1\)
\(\Delta'=4-\left(-m+3\right)>0\Leftrightarrow m>-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=-m+3\end{matrix}\right.\)
\(\left|x_1-x_2\right|< 1\)
\(\Leftrightarrow\left(x_1-x_2\right)^2< 1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 1\)
\(\Leftrightarrow16-4\left(-m+3\right)< 1\)
\(\Leftrightarrow m< -\dfrac{3}{4}\)
Kết hợp điều kiện ban đầu \(\Rightarrow-1< m< -\dfrac{3}{4}\)
\(\Delta'=4-\left(-m+3\right)>0\Leftrightarrow m>-1\)(*)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=3-m\end{matrix}\right.\)
\(\left|x_1-x_2\right|\le1\\ \Rightarrow\left(x_1-x_2\right)^2\le1^2\\ \Rightarrow\left(x_1+x_2\right)^2-4x_1x_2\le1\\ \Rightarrow\left(-4\right)^2-4\left(3-m\right)\le1\\ \Rightarrow16-12+4m\le1\\ \Rightarrow4+4m\le1\\ \Rightarrow4m\le-3\\ \Rightarrow m\le-\dfrac{3}{4}\)
Kết hợp với (*)⇒\(-1< m\le-\dfrac{3}{4}\)