Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn trả lời từng câu cũng được mà :) làm được câu nào thì giúp mình nhé. Tks!
cau a , xet phuong trinh 1 la 8(x+y) =x^2 +2y^2 + 3xy
ta co , 8(x+y) = x^2 +2xy+y^2 +y^2+xy
8(x+y)= (x+y)^2+y(x+y)
(x+y)((x+y)+y-8)=0 xét (x+y)=0 và (x+2y-8)=0 . xét từng trường hợp rồi thế vào phương trình 2 rồi tự giải lột nhe
cau 2 de kho hieu the , viet lai xem nao sao 2 phong trinh ma bang mot bieu thuc thoi ak
ĐK:\(x\ge2;y\ge0\)
\(pt\left(1\right)\Leftrightarrow\left(x-1\right)^3-3\left(x-1\right)=\left(y+3\right)\sqrt{y+3}-3\sqrt{y+3}\)
Xét hàm số:\(f\left(t\right)=t^3-3t\),t>1
\(\Rightarrow f'\left(t\right)=3t^2-3>0,t>1\)
\(\Rightarrow x-1=\sqrt{y+3}\)(*)
pt(2)\(\Leftrightarrow9\left(x-2\right)=y^2+8y\)(2')
Thay (*) vào (2') ta đc:\(9\left(\sqrt{y+3}-1\right)=y^2+8y\)
\(\Leftrightarrow9\sqrt{x+3}=y^2+8y+9\)\(\Leftrightarrow y=1\Rightarrow x=3\)(t/m)
KL:Hệ pt có nghiệm(x;y)=(3;1)
Điều kiện x>1
Từ (1) ta có \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3
Đặt \(t=\log_2\left(x^2-2x+5\right)\)
Tìm điều kiện của t :
- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)
- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)
Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3
- Ta có \(x^2-2x+5=2'\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)
Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)
Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)
Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)
- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)
- Bảng biến thiên :
x | 2 \(\frac{5}{2}\) 3 |
y' | + 0 - |
y | -6 -6 -\(\frac{25}{4}\) |
Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6
\(\begin{cases}\sqrt{x}+\sqrt{y}=3\left(1\right)\\\sqrt{x+5}+\sqrt{y+3}\le m\left(2\right)\end{cases}\)
Điều kiện \(\begin{cases}x\ge0\\y\ge0\end{cases}\)
Đặt \(t=\sqrt{x}\) lúc đó (1) có dạng \(\sqrt{y=3-1}\Leftrightarrow y=\left(t^2-6t+9\right)\)
Điều kiện của t : \(2\le t\)\(\le3\)
Khi đó (2) \(\Leftrightarrow\sqrt{t^2+5}+\sqrt{t^2-6t+12}\le m\)
Xét hàm số : \(f\left(t\right)=\sqrt{t^2+5}+\sqrt{t^2-6t+12}\)
- Miền xác định \(D=\left[2;3\right]\)
- Đạo hàm
\(f'\left(t\right)=\frac{t}{\sqrt{t^2+5}}+\frac{t-3}{\sqrt{t^2-6t+12}}\)
\(f'\left(t\right)=0\Leftrightarrow\frac{t}{\sqrt{t^2+5}}=\frac{3-t}{\sqrt{t^2-6t+12}}\)
\(\Leftrightarrow t\sqrt{t^2-6t+12}=\left(3-t\right)\sqrt{t^2+5}\)
\(\Leftrightarrow t^4-6t^3+12t^2=t^4-6t^3+14t^2-30t+45\)
\(\Leftrightarrow2t^2-30t+45=0\) vô nghiệm với \(x\in D\)
Mà \(f'\left(3\right)>0\Rightarrow f\left(t\right)\) đồng biến trên D do đó min \(f\left(2\right)=5\)
Để có nghiệm (x,y) thỏa mãn \(x\ge4\Leftrightarrow\) (2) có nghiệm thỏa mãn (1)
và \(x\ge4\Leftrightarrow f\left(t\right)\le m\) thỏa mãn với mọi \(2\le t\)\(\le3\)
\(\Leftrightarrow\) min \(f\left(t\right)\le m\Leftrightarrow m\ge5\)