Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=4mx^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\mx^2=2\end{matrix}\right.\)
Hàm có 3 cực trị khi \(m>0\)
Gọi 3 cực trị là A, B, C với \(\left\{{}\begin{matrix}A\left(0;1\right)\\B\left(\sqrt{\dfrac{2}{m}};1-\dfrac{4}{m}\right)\\C\left(-\sqrt{\dfrac{2}{m}};1-\dfrac{4}{m}\right)\end{matrix}\right.\)
Gọi H là trung điểm BC \(\Rightarrow H\left(0;1-\dfrac{4}{m}\right)\)
\(AH=\left|y_A-y_H\right|=\dfrac{4}{m}\) ; \(BC=\left|x_B-x_C\right|=2\sqrt{\dfrac{2}{m}}\)
Tam giác ABC luôn cân tại A nên nó vuông cân khi \(AH=\dfrac{1}{2}BC\)
\(\Leftrightarrow\dfrac{4}{m}=\sqrt{\dfrac{2}{m}}\Rightarrow m=8\)
Hàm số xác định trên R
Ta có \(y'=4x^3-4m^2x=4x\left(x^2-m^2\right)\)
Suy ra hàm số có 3 cực trị \(\Leftrightarrow m\ne0\)
Khi đó tọa độ các điểm cực trị của đồ thị hàm số là \(A\left(0;1\right);B\left(m;1-m^4\right);C\left(-m;1-m^4\right)\)
Ta thấy AB = AC nên tam giác ABC vuông cân \(\Leftrightarrow AB^2+AC^2=BC^2\)
\(\Leftrightarrow2\left(m^2+m^8\right)=4m^2\Rightarrow m=\pm1\)
Vậy \(m=\pm1\) là giá trị cần tìm
Chọn A
Ta có:
Hàm số (C) có ba điểm cực trị ⇔ m ≠ 0 (*) .
Với điều kiện (*) gọi ba điểm cực trị là:
.
Do đó nếu ba điểm cực trị tạo thành một tam giác vuông cân, thì sẽ vuông cân tại đỉnh A.
Do tính chất của hàm số trùng phương, tam giác ABC đã là tam giác cân rồi, cho nên để thỏa mãn điều kiện tam giác là vuông, thì AB vuông góc với AC
Tam giác ABC vuông khi:
Vậy với m = ± 1 thì thỏa mãn yêu cầu bài toán.
[Phương pháp trắc nghiệm]
Yêu cầu bài toán
⇔ b 3 8 a + 1 = 0 ⇔ - m 6 + 1 = 0
⇔ m = ± 1
Chọn D
Hàm số có 3 điểm cực trị ⇔ m ≠ 0
Khi đó 3 điểm cực trị của đồ thị hàm số là
Do tính chất đối xứng, ta có ∆ A B C cân tại đỉnh A
Vậy ∆ A B C chỉ có thể vuông cân tại đỉnh A
Kết hợp điều kiện ta có: m = ± 1 ( thỏa mãn).
Lưu ý: có thể sử dụng công thức b 3 8 a + 1 = 0 .
Đáp án D
Áp dụng công thức giải nhanh cho tam giác vuông cân (tam giác luôn cân):